Skip to content

isqx (iso80000)

The public API is the top level isqx module.

_iso80000 ¤

Units and quantities as defined by the International System of Quantities (ISQ), as specified in the ISO/IEC 80000 standard.

Domain-specific units and quantities should be defined elsewhere, in their own modules (e.g. aerospace) for performance reasons.

See: isqx._citations.SI, isqx._citations.IUPAP1, isqx._citations.SP811 isqx._citations.CODATA2022, isqx._citations.ISO_80000_2, isqx._citations.ISO_80000_3, isqx._citations.ISO_80000_4, isqx._citations.ISO_80000_5, isqx._citations.IEC_80000_6, isqx._citations.IEV, isqx._citations.ISO_80000_7, isqx._citations.ISO_80000_8, isqx._citations.ISO_80000_9, isqx._citations.ISO_80000_10, isqx._citations.ISO_80000_11, isqx._citations.ISO_80000_12, isqx._citations.ISO_80000_13, isqx._citations.MP_UNITS.

Quantity kinds in this module are largely derived from Wikidata.

DIM_TIME ¤

DIM_TIME = BaseDimension('T')

S ¤

S = BaseUnit(DIM_TIME, 'second')

Second, a unit of time.

DIM_LENGTH ¤

DIM_LENGTH = BaseDimension('L')

M ¤

M = BaseUnit(DIM_LENGTH, 'meter')

Meter, a unit of length.

DIM_MASS ¤

DIM_MASS = BaseDimension('M')

KG ¤

KG = BaseUnit(DIM_MASS, 'kilogram')

Kilogram, a unit of mass.

G ¤

G = (Fraction(1, 1000) * KG).alias(
    "gram", allow_prefix=True
)

Gram, a unit of mass.

DIM_CURRENT ¤

DIM_CURRENT = BaseDimension('I')

A ¤

A = BaseUnit(DIM_CURRENT, 'ampere')

Ampere, a unit of electric current.

DIM_TEMPERATURE ¤

DIM_TEMPERATURE = BaseDimension('Θ')

K ¤

K = BaseUnit(DIM_TEMPERATURE, 'kelvin')

Kelvin, a unit of thermodynamic temperature.

DIM_AMOUNT ¤

DIM_AMOUNT = BaseDimension('N')

MOL ¤

MOL = BaseUnit(DIM_AMOUNT, 'mole')

Mole, a unit of amount of substance.

DIM_LUMINOUS_INTENSITY ¤

DIM_LUMINOUS_INTENSITY = BaseDimension('J')

CD ¤

Candela, a unit of luminous intensity.

RAD ¤

RAD = Dimensionless('radian')

Radian, a unit of plane angle. Not to be confused with m m⁻¹.

SR ¤

SR = Dimensionless('steradian')

Steradian, a unit of solid angle. Not to be confused with m² m⁻².

HZ ¤

HZ = (S**-1)["frequency"].alias("hertz", allow_prefix=True)

Unit of frequency. Shall only be used for periodic phenomena.

M_PERS ¤

M_PERS = M * S ** -1

M_PERS2 ¤

M_PERS2 = M * S ** -2

N ¤

N = (KG * M_PERS2).alias('newton', allow_prefix=True)

Newton, a unit of force.

PA ¤

PA = (N * M ** -2).alias('pascal', allow_prefix=True)

Pascal, a unit of pressure and stress.

J ¤

J = (N * M).alias('joule', allow_prefix=True)

Joule, a unit of energy, work and amount of heat.

W ¤

W = (J * S ** -1).alias('watt', allow_prefix=True)

Watt, a unit of power and radiant flux.

C ¤

C = (A * S).alias('coulomb', allow_prefix=True)

Coulomb, a unit of electric charge.

V ¤

V = (W * A ** -1).alias('volt', allow_prefix=True)

Volt, a unit of electric potential difference and voltage, also known as electric tension or tension.

F ¤

F = (C * V ** -1).alias('farad', allow_prefix=True)

Farad, a unit of capacitance.

OHM ¤

OHM = (V * A ** -1).alias('ohm', allow_prefix=True)

Ohm, a unit of electric resistance.

SIEMENS ¤

SIEMENS = (A * V**-1).alias("siemens", allow_prefix=True)

Siemens, a unit of electric conductance.

WB ¤

WB = (V * S).alias('weber', allow_prefix=True)

Weber, a unit of magnetic flux.

T ¤

T = (WB * M ** -2).alias('tesla', allow_prefix=True)

Tesla, a unit of magnetic flux density.

H ¤

H = (WB * A ** -1).alias('henry', allow_prefix=True)

Henry, a unit of inductance.

CELSIUS ¤

CELSIUS = Translated(K, Decimal('-273.15'), 'celsius')

Celsius, a unit of thermodynamic temperature. An absolute, translated scale. Cannot be composed with other units.

LM ¤

LM = (CD * SR).alias('lumen', allow_prefix=True)

Lumen, a unit of luminous flux.

LX ¤

LX = (LM * M ** -2).alias('lux', allow_prefix=True)

Lux, a unit of illuminance.

BQ ¤

BQ = (S**-1)["activity"].alias(
    "becquerel", allow_prefix=True
)

Unit of activity referred to a radionuclide. Shall only be used for stochastic processes in activity referred to a radionuclide. Not to be confused with "radioactivity".

GY ¤

GY = (J * KG**-1)["absorbed_dose"].alias(
    "gray", allow_prefix=True
)

Gray, a unit of absorbed dose and kerma.

SV ¤

SV = (J * KG**-1)["dose_equivalent"].alias(
    "sievert", allow_prefix=True
)

Sievert, a unit of dose equivalent.

KAT ¤

KAT = (MOL * S ** -1).alias('katal', allow_prefix=True)

Katal, a unit of catalytic activity.

YOTTA ¤

YOTTA = Prefix(10 ** 24, 'yotta')

ZETTA ¤

ZETTA = Prefix(10 ** 21, 'zetta')

EXA ¤

EXA = Prefix(10 ** 18, 'exa')

PETA ¤

PETA = Prefix(10 ** 15, 'peta')

TERA ¤

TERA = Prefix(10 ** 12, 'tera')

GIGA ¤

GIGA = Prefix(10 ** 9, 'giga')

MEGA ¤

MEGA = Prefix(10 ** 6, 'mega')

KILO ¤

KILO = Prefix(10 ** 3, 'kilo')

HECTO ¤

HECTO = Prefix(10 ** 2, 'hecto')

DECA ¤

DECA = Prefix(10 ** 1, 'deca')

DECI ¤

DECI = Prefix(Fraction(1, 10 ** 1), 'deci')

CENTI ¤

CENTI = Prefix(Fraction(1, 10 ** 2), 'centi')

MILLI ¤

MILLI = Prefix(Fraction(1, 10 ** 3), 'milli')

MICRO ¤

MICRO = Prefix(Fraction(1, 10 ** 6), 'micro')

NANO ¤

NANO = Prefix(Fraction(1, 10 ** 9), 'nano')

PICO ¤

PICO = Prefix(Fraction(1, 10 ** 12), 'pico')

FEMTO ¤

FEMTO = Prefix(Fraction(1, 10 ** 15), 'femto')

ATTO ¤

ATTO = Prefix(Fraction(1, 10 ** 18), 'atto')

ZEPTO ¤

ZEPTO = Prefix(Fraction(1, 10 ** 21), 'zepto')

YOCTO ¤

YOCTO = Prefix(Fraction(1, 10 ** 24), 'yocto')

CONST_SPEED_OF_LIGHT_VACUUM ¤

CONST_SPEED_OF_LIGHT_VACUUM: Annotated[int, M_PERS] = (
    299792458
)

Speed of electromagnetic waves in vacuum, defined by the 17th CGPM (1983).

Wikidata: Q2111
Symbol: $c_0$

CONST_PLANCK ¤

CONST_PLANCK: Annotated[Decimal, J * S] = Decimal(
    "6.62607015e-34"
)

Planck constant, (CODATA 2022).

CONST_REDUCED_PLANCK ¤

CONST_REDUCED_PLANCK: Annotated[LazyProduct, J * S] = (
    LazyProduct((CONST_PLANCK, (2, -1), (_PI, -1)))
)

CONST_ELEMENTARY_CHARGE ¤

CONST_ELEMENTARY_CHARGE: Annotated[Decimal, C] = Decimal(
    "1.602176634e-19"
)

Elementary charge, (CODATA 2022).

Wikidata: Q2101
Symbol: $e$

CONST_PERMEABILITY_VACUUM ¤

CONST_PERMEABILITY_VACUUM: Annotated[
    Decimal, H * M**-1, StdUncertainty(20)
] = Decimal("1.25663706127e-6")

Permeability of free space, (CODATA 2022).

Wikidata: Q1515261
Symbol: $\mu_0$

CONST_PERMITTIVITY_VACUUM ¤

CONST_PERMITTIVITY_VACUUM: Annotated[
    LazyProduct, F * M**-1
] = LazyProduct(
    (
        (CONST_PERMEABILITY_VACUUM, -1),
        (CONST_SPEED_OF_LIGHT_VACUUM, -2),
    )
)

Permittivity of free space, (CODATA 2022).

Wikidata: Q6158
Symbol: $\varepsilon_0$

CONST_BOLTZMANN ¤

CONST_BOLTZMANN: Annotated[Decimal, J * K**-1] = Decimal(
    "1.380649e-23"
)

Boltzmann constant, (CODATA 2022).

CONST_AVOGADRO ¤

CONST_AVOGADRO: Annotated[Decimal, MOL**-1] = Decimal(
    "6.02214076e23"
)

Avogadro constant, (CODATA 2022).

CONST_STEFAN_BOLTZMANN ¤

CONST_STEFAN_BOLTZMANN: Annotated[
    LazyProduct, W * M**-2 * K**-4
] = LazyProduct(
    (
        2,
        (_PI, 5),
        (CONST_BOLTZMANN, 4),
        (15, -1),
        (CONST_SPEED_OF_LIGHT_VACUUM, -2),
        (CONST_PLANCK, -3),
    )
)

Stefan-Boltzmann constant, (CODATA 2022).

CONST_FIRST_RADIATION ¤

CONST_FIRST_RADIATION: Annotated[
    LazyProduct, W * M**-2
] = LazyProduct(
    (2, _PI, CONST_PLANCK, (CONST_SPEED_OF_LIGHT_VACUUM, 2))
)

First radiation constant, (CODATA 2022).

CONST_SECOND_RADIATION ¤

CONST_SECOND_RADIATION: Annotated[LazyProduct, M * K] = (
    LazyProduct(
        (
            CONST_PLANCK,
            CONST_SPEED_OF_LIGHT_VACUUM,
            (CONST_BOLTZMANN, -1),
        )
    )
)

Second radiation constant, (CODATA 2022).

CONST_DENSITY_HG ¤

CONST_DENSITY_HG: Annotated[Decimal, KG * CU_M**-1] = (
    Decimal("13595.1")
)

Density of mercury at 0 °C and 101.325 kPa. For use in isqx.MMHG.

CONST_STANDARD_GRAVITY ¤

CONST_STANDARD_GRAVITY: Annotated[Decimal, M_PERS2] = (
    Decimal("9.80665")
)

Standard acceleration of gravity, defined by the 3rd CGPM (1901).

CONST_DENSITY_H2O ¤

CONST_DENSITY_H2O: Annotated[int, KG * CU_M ** -1] = 1000

Conventional density of water. For use in isqx.MMH2O.

CONST_STANDARD_PRESSURE_ATM ¤

CONST_STANDARD_PRESSURE_ATM: Annotated[int, PA] = 101325

Standard pressure, defined by the 10th CGPM (1954).

CONST_STANDARD_PRESSURE_IUPAC ¤

CONST_STANDARD_PRESSURE_IUPAC: Annotated[int, PA] = 100000

Standard pressure, for use in specifying the properties of substances, defined by the IUPAC (1982).

MIN ¤

MIN = (60 * S).alias('minute')

Minute, a unit of time.

HOUR ¤

HOUR = (60 * MIN).alias('hour')

Hour, a unit of time.

DAY ¤

DAY = (24 * HOUR).alias('day')

Day, a unit of time.

YEAR ¤

YEAR = (Decimal('365.25') * DAY).alias('year')

ANNUS ¤

ANNUS = (Decimal("365.25") * DAY).alias(
    "annus", allow_prefix=True
)

AU ¤

AU = (149597870700 * M).alias('astronomical_unit')

Astronomical unit, as defined by IAU 2012 Resolution B2.

PC ¤

PC = (LazyProduct((648000, (_PI, -1))) * AU).alias("parsec")

Parsec

LY ¤

LY = (CONST_SPEED_OF_LIGHT_VACUUM * YEAR).alias(
    "light_year", allow_prefix=True
)

Light-year, a unit of astronomical length, defined as the distance that light travels in the vacuum in one year.

DEG ¤

DEG = (LazyProduct((_PI, (180, -1))) * RAD).alias('degree')

Degrees (°), a unit of plane angle.

MIN_ANGLE ¤

MIN_ANGLE = (Fraction(1, 60) * DEG).alias('minute_angle')

Minutes (′), a unit of plane angle.

SEC_ANGLE ¤

SEC_ANGLE = (Fraction(1, 60) * MIN_ANGLE).alias(
    "second_angle"
)

Seconds (″) or arcseconds in astronomy, a unit of plane angle.

REV ¤

REV = (LazyProduct((2, _PI)) * RAD).alias('revolution')

Revolutions, a unit of plane angle.

SQ_M ¤

SQ_M = M ** 2

ARE ¤

ARE = (100 * SQ_M).alias('are')

HECTARE ¤

HECTARE = (100 * ARE).alias('hectare')

Hectare, a unit of land area, as adopted by the CIPM in 1879.

CU_M ¤

CU_M = M ** 3

L ¤

L = (Fraction(1, 10**3) * CU_M).alias(
    "liter", allow_prefix=True
)

Liter, a unit of volume, as adopted by the 16th CGPM in 1979.

TONNE ¤

TONNE = (1000 * KG).alias('tonne', allow_prefix=True)

Tonne, a unit of mass, also known as the metric ton in the U.S.

U ¤

U = (Decimal("1.660538782e-27") * KG).alias(
    "unified_atomic_mass_unit"
)

Unified atomic mass unit, also known as the dalton.

EV ¤

EV = (CONST_ELEMENTARY_CHARGE * J).alias(
    "electronvolt", allow_prefix=True
)

Electronvolt, the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in vacuum.

BEL ¤

BEL = Log(_RATIO, base=10).alias('bel', allow_prefix=True)

Bel, a logarithmic unit of a generic ratio. When used for a power quantity, it is \(L_B = \log_{10}(P/P_{ref})\). The decibel (dB) is more commonly used.

NEPER ¤

NEPER = Log(_RATIO, base=_E).alias(
    "neper", allow_prefix=True
)

Neper, a logarithmic unit of a generic ratio. When used for a root-power quantity, it is \(L_{Np} = \ln(F/F_{ref})\).

DB ¤

DB = DECI * BEL

A decibel level for a power quantity, \(L_{dB} = 10 \log_{10}(\text{ratio})\).

DB_ROOT_POWER ¤

DB_ROOT_POWER = 2 * (DECI * BEL)

A decibel level for a root-power (field) quantity, \(L_{dB} = 20 \log_{10}(\text{ratio})\).

DBV ¤

DBV = (20 * Log(ratio(V, Quantity(1, V)), base=10)).alias(
    "dBV", allow_prefix=True
)

Decibel, voltage relative to 1 volt, regardless of impedance.

CONST_DBU_REF ¤

CONST_DBU_REF: Annotated[LazyProduct, V] = LazyProduct(
    ((Decimal("0.6"), Fraction(1, 2)),)
)

DBU ¤

DBU = (
    20
    * Log(ratio(V, Quantity(CONST_DBU_REF, V)), base=10)
).alias("dBu", allow_prefix=True)

Decibel, voltage relative to ~0.775 volt (the voltage that dissipates 1 milliwatt in a 600 ohm load).

DBMV ¤

DBMV = (
    20 * Log(ratio(V, Quantity(1, MILLI * V)), base=10)
).alias("dBmV", allow_prefix=True)

Decibel, voltage relative to 1 millivolt.

DBUV ¤

DBUV = (
    20 * Log(ratio(V, Quantity(1, MICRO * V)), base=10)
).alias("dBμV", allow_prefix=True)

Decibel, voltage relative to 1 microvolt.

Z_METEO ¤

Z_METEO = (MILLI * M) ** 6 * M ** -3

DBZ ¤

DBZ = (
    10 * Log(ratio(Z_METEO, Quantity(1, Z_METEO)), base=10)
).alias("dBZ", allow_prefix=True)

Decibel, reflectivity factor Z relative to 1 mm⁶ m⁻³ for weather radar.

DBM ¤

DBM = (
    10 * Log(ratio(W, Quantity(1, MILLI * W)), base=10)
).alias("dBm", allow_prefix=True)

Decibel, power relative to 1 milliwatt.

DBW ¤

DBW = (10 * Log(ratio(W, Quantity(1, W)), base=10)).alias(
    "dBW", allow_prefix=True
)

Decibel, power relative to 1 watt.

NPV ¤

NPV = Log(ratio(V, Quantity(1, V)), base=_E).alias(
    "NpV", allow_prefix=True
)

Neper, voltage relative to 1 volt.

NPW ¤

NPW = (
    Fraction(1, 2)
    * Log(ratio(W, Quantity(1, W)), base=_E)
).alias("NpW", allow_prefix=True)

Neper, power relative to 1 watt.

ANGSTROM ¤

ANGSTROM = (Fraction(1, 10 ** 10) * M).alias('angstrom')

Ångström, a unit of length.

BARN ¤

BARN = (Fraction(1, 10**28) * SQ_M).alias(
    "barn", allow_prefix=True
)

Barn, a unit of area for nuclear cross sections.

BAR ¤

BAR = (10 ** 5 * PA).alias('bar', allow_prefix=True)

Bar, a unit of pressure.

MMHG ¤

MMHG = (
    LazyProduct((CONST_DENSITY_HG, CONST_STANDARD_GRAVITY))
    * (MILLI * M)
).alias("millimeter_of_hg")

Millimeter of mercury, a unit of pressure.

MMH2O ¤

MMH2O = (
    LazyProduct((CONST_DENSITY_H2O, CONST_STANDARD_GRAVITY))
    * (MILLI * M)
).alias("millimeter_of_h2o")

Millimeter of water (conventional), a unit of pressure.

CURIE ¤

CURIE = (Decimal('3.7e10') * BQ).alias('curie')

Curie, a legacy unit of radioactivity. The SI unit becquerel is preferred.

ROENTGEN ¤

ROENTGEN = (Decimal("2.58e-4") * (C * KG**-1)).alias(
    "roentgen"
)

Roentgen, a legacy unit of exposure to ionizing radiation. The SI unit coulomb per kilogram is preferred.

RD_ABSORBED ¤

RD_ABSORBED = (Fraction(1, 100) * GY).alias('rd')

Rad, a legacy unit of absorbed dose. The SI unit gray is preferred. Not to be confused with the radian.

REM ¤

REM = (Fraction(1, 100) * SV).alias('rem')

Rem (roentgen equivalent in man), a legacy unit of dose equivalent. The SI unit sievert is preferred.

FERMI ¤

FERMI = (Fraction(1, 10 ** 5) * M).alias('fermi')

Fermi, an obsolete name for the femtometer.

ATM ¤

ATM = (CONST_STANDARD_PRESSURE_ATM * PA).alias("atmosphere")

Standard atmosphere, a unit of pressure.

TORR ¤

TORR = (Fraction(1, 760) * ATM).alias('torr')

Torr, a unit of pressure.

KGF ¤

KGF = (CONST_STANDARD_GRAVITY * KG * M_PERS2).alias(
    "kg_force"
)

Kilogram-force.

KWH ¤

KWH = (KILO * W * HOUR).alias('kilowatt_hour')

Kilowatt-hour, commonly used as a billing unit for electric energy.

KPH ¤

KPH = (KILO * M * HOUR ** -1).alias('kph')

Kilometers per hour.

VA ¤

VA = (V * A).alias('volt_ampere', allow_prefix=True)

Volt-ampere, a unit of apparent power.

VAR ¤

VAR = (V * A).alias('var', allow_prefix=True)

Volt-ampere reactive, a unit of reactive power.

LENGTH ¤

LENGTH = QtyKind(M)

Measured dimension of an object in a physical space.

Wikidata: Q36253
Symbols: $l$, $L$

WIDTH ¤

WIDTH = LENGTH['width']

Horizontal dimension of an entity.

Wikidata: Q35059
Symbols: $b$, $B$

HEIGHT ¤

HEIGHT = LENGTH['height']

Distance between the lowest and highest end of an object.

More specifically, ICAO defines it as "the vertical distance of a level, a point or an object considered as a point, measured from a specific datum.". Specify the particular datum using the isqx.OriginAt tag.

Wikidata: Q208826
Symbols: $h$, $H$

DEPTH ¤

DEPTH = LENGTH['depth']

A measure of distance downwards from a surface.

Symbols: $d$, $D$

RELATIVE_TO_MSL ¤

RELATIVE_TO_MSL = OriginAt('mean_sea_level')

ALTITUDE ¤

ALTITUDE = LENGTH['altitude', RELATIVE_TO_MSL]

The vertical distance of a level, a point or an object considered as a point, measured from the mean sea level (as defined by ICAO).

For the different kinds of altitude, see the isqx.aerospace module.

Symbols: $h$, $H$

ELEVATION ¤

ELEVATION = LENGTH['elevation', RELATIVE_TO_MSL]

The vertical distance of a point or a level, on or affixed to the surface of the Earth, measured from mean sea level (as defined by ICAO).

Symbols: $z$, $Z$

THICKNESS ¤

THICKNESS = LENGTH['thickness']

Extent from one surface to the opposite, usually in the smallest solid dimension.

Wikidata: Q3589038
Symbols: $t$, $d$, $\delta$

DIAMETER ¤

DIAMETER = LENGTH['diameter']

A straight line segment that passes through the center of a circle or sphere; its length.

Wikidata: Q37221
Symbols: $D$, $d$

RADIUS ¤

RADIUS = LENGTH['radius']

Segment in a circle or sphere from its center to its perimeter or surface, and its length.

Wikidata: Q173817
Symbols: $r$, $R$
$$R = \frac{D}{2}$$
$ R $
=
$ D $
=

ARC_LENGTH ¤

ARC_LENGTH = LENGTH['arc_length']

The distance between two points along a section of a curve.

Wikidata: Q670036
Symbol: $s$

DISTANCE ¤

DISTANCE = LENGTH['distance']

Length of the straight line that connects two points in a measurable space or in an observable physical space.

Wikidata: Q126017
Symbols: $d$, $r$

RADIAL_DISTANCE ¤

RADIAL_DISTANCE = DISTANCE['radial']

The radial distance within a closed non-intersecting curve/surface. Use isqx.OriginAt to specify the origin.

Wikidata: Q1578234
Symbols: $\rho_Q$, $\rho$

POSITION ¤

POSITION = QtyKind(M, ('position', VECTOR))

Vector representing the position of a point with respect to a given origin and axes. Specify the origin with the isqx.OriginAt tag and the coordinate system (e.g. isqx.CARTESIAN).

Wikidata: Q192388
Symbol: $\boldsymbol{r}$

INITIAL_POSITION ¤

INITIAL_POSITION = POSITION['initial']

FINAL_POSITION ¤

FINAL_POSITION = POSITION['final']

DISPLACEMENT ¤

DISPLACEMENT = QtyKind(M, ('displacement', VECTOR))

Vector that is the shortest distance from the initial to the final position of a point P.

Wikidata: Q190291
Symbols: $\Delta\boldsymbol{r}$, $\boldsymbol{s}$
$$\boldsymbol{s} = \boldsymbol{r}_2 - \boldsymbol{r}_1$$
$ \boldsymbol{s} $
=
$ \boldsymbol{r}_1 $
=
$ \boldsymbol{r}_2 $
=

CURVATURE ¤

CURVATURE = QtyKind(M ** -1, ('curvature',))

A measure of how much a curve deviates from being a straight line.

Wikidata: Q214881
Symbol: $\kappa$

RADIUS_OF_CURVATURE ¤

RADIUS_OF_CURVATURE = QtyKind(M, ('radius_of_curvature',))

Radius of a circle which best approximates a curve at a given point.

Wikidata: Q1136069
Symbol: $\rho$
$$\rho = \frac{1}{|\kappa|}$$
$ \rho $
=
$ \kappa $
=

AREA ¤

AREA = QtyKind(SQ_M)

Quantity that expresses the extent of a two-dimensional surface or shape, or planar lamina, in the plane.

Wikidata: Q11500
Symbols: $A$, $S$

SURFACE_ELEMENT ¤

SURFACE_ELEMENT = AREA[DIFFERENTIAL]

CROSS_SECTIONAL_AREA ¤

CROSS_SECTIONAL_AREA = AREA['cross_section']
Symbol: $A$

VOLUME ¤

VOLUME = QtyKind(CU_M)

Quantity of three-dimensional space.

Wikidata: Q39297
Symbols: $V$, $S$

VOLUME_ELEMENT ¤

VOLUME_ELEMENT = VOLUME[DIFFERENTIAL]

ANGLE ¤

ANGLE = QtyKind(RAD, ('angle',))

A measure for how wide an angle is. For signed angles, use angular displacement.

Wikidata: Q1357788
Symbols: $\alpha$, $\beta$, $\gamma$
$$\alpha = \frac{s}{r}$$
$ \alpha $
=
Angle (dimensionless)
$ s $
=
$ r $
=

ANGULAR_DISPLACEMENT_CCW ¤

ANGULAR_DISPLACEMENT_CCW = ANGLE[
    "displacement", "counterclockwise"
]

Displacement measured angle-wise when a body is in circular or rotational motion, positive counterclockwise.

Wikidata: Q3305038
Symbols: $\vartheta$, $\varphi$
$$\vartheta = \frac{s}{r}$$
$ \vartheta $
=
Angular displacement ccw (dimensionless)
$ s $
=
$ r $
=

ANGULAR_DISPLACEMENT_CW ¤

ANGULAR_DISPLACEMENT_CW = ANGLE["displacement", "clockwise"]

Change in the angular position of a point, positive clockwise.

Wikidata: Q3305038
Symbols: $\vartheta$, $\varphi$
$$\vartheta = \frac{s}{r}$$
$ \vartheta $
=
Angular displacement cw (dimensionless)
$ s $
=
$ r $
=

PHASE_ANGLE ¤

PHASE_ANGLE = ANGLE['phase']

Angular measure of the phase of a complex number.

Wikidata: Q415829
Symbols: $\varphi$, $\phi$

SOLID_ANGLE ¤

SOLID_ANGLE = QtyKind(SR, ('angle', 'solid'))

Measure of a subtended portion of a sphere, used to describe the apparent size of items in a three-dimensional field of view.

Wikidata: Q208476
Symbol: $\Omega$
$$\Omega = \frac{A}{r^2}$$
$ \Omega $
=
Solid angle (dimensionless)
$ A $
=
Area (meter²)
$ r $
=

TIME ¤

TIME = QtyKind(S)
Symbol: $t$

INITIAL_TIME ¤

INITIAL_TIME = TIME['initial']

FINAL_TIME ¤

FINAL_TIME = TIME['final']

DURATION ¤

DURATION = TIME[DELTA]

Physical quantity for describing the temporal distance between events.

Wikidata: Q2199864
Symbol: $\Delta t$
$$\Delta t = t_2 - t_1$$
$ \Delta t $
=
$ t_1 $
=
$ t_2 $
=

PERIOD ¤

PERIOD = DURATION['period']

Smallest temporal unit after which a process repeats.

Wikidata: Q2642727
Symbol: $T$

TIME_CONSTANT ¤

TIME_CONSTANT = QtyKind(S, ('time_constant',))

Measure for the response of a dynamic system to a change of the system input.

Wikidata: Q1335249
Symbols: $\tau$, $T$

VELOCITY ¤

VELOCITY = QtyKind(M_PERS, (VECTOR,))
Wikidata: Q11465
Symbols: $\boldsymbol{v}$, $u$, $v$, $w$
$$\boldsymbol{v} = \frac{d\boldsymbol{r}}{dt}$$
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$ \boldsymbol{r} $
=
$ t $
=

SPEED ¤

SPEED = VELOCITY['magnitude']
Wikidata: Q3711325
Symbol: $v$
$$v = |\boldsymbol{v}|$$
$ v $
=
Speed (meter · second⁻¹)
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)

ACCELERATION ¤

ACCELERATION = QtyKind(M_PERS2, (VECTOR,))
Wikidata: Q11376
Symbol: $\boldsymbol{a}$
$$\boldsymbol{a} = \frac{d\boldsymbol{v}}{dt}$$
$ \boldsymbol{a} $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$ t $
=

RAD_PERS ¤

RAD_PERS = RAD * S ** -1

RAD_PERS2 ¤

RAD_PERS2 = RAD * S ** -2

ANGULAR_VELOCITY_CCW ¤

ANGULAR_VELOCITY_CCW = QtyKind(
    RAD_PERS, (VECTOR, "counterclockwise")
)
Wikidata: Q161635
Symbol: $\boldsymbol{\omega}$
$$\boldsymbol{\omega} = \frac{d\theta}{dt} \boldsymbol{\hat{u}}$$
$ \boldsymbol{\omega} $
=
$ \theta $
=
Angular displacement ccw (dimensionless)
$ t $
=
$ \boldsymbol{\hat{u}} $
=
Axis of rotation

ANGULAR_VELOCITY_CW ¤

ANGULAR_VELOCITY_CW = QtyKind(
    RAD_PERS, (VECTOR, "clockwise")
)

Angular velocity, but positive clockwise.

Wikidata: Q161635
Symbol: $\boldsymbol{\omega}$
$$\boldsymbol{\omega} = \frac{d\theta}{dt} \boldsymbol{\hat{u}}$$
$ \boldsymbol{\omega} $
=
$ \theta $
=
Angular displacement cw (dimensionless)
$ t $
=
$ \boldsymbol{\hat{u}} $
=
Axis of rotation

ANGULAR_ACCELERATION_CCW ¤

ANGULAR_ACCELERATION_CCW = QtyKind(
    RAD_PERS2, (VECTOR, "counterclockwise")
)
Wikidata: Q186300
Symbol: $\boldsymbol{\alpha}$
$$\boldsymbol{\alpha} = \frac{d\boldsymbol{\omega}}{dt}$$
$ \boldsymbol{\alpha} $
=
$ \boldsymbol{\omega} $
=
$ t $
=

ANGULAR_ACCELERATION_CW ¤

ANGULAR_ACCELERATION_CW = QtyKind(
    RAD_PERS2, (VECTOR, "clockwise")
)

Angular acceleration, but positive clockwise.

Wikidata: Q186300
Symbol: $\boldsymbol{\alpha}$
$$\boldsymbol{\alpha} = \frac{d\boldsymbol{\omega}}{dt}$$
$ \boldsymbol{\alpha} $
=
$ \boldsymbol{\omega} $
=
$ t $
=

FREQUENCY ¤

FREQUENCY = QtyKind(HZ)

Number of occurrences or cycles per time.

Wikidata: Q11652
Symbols: $f$, $\nu$
$$f = \frac{1}{T}$$
$ f $
=
$ T $
=

NUMBER_OF_REVOLUTIONS ¤

NUMBER_OF_REVOLUTIONS = Dimensionless('n_revolutions')

Physical quantity; number of revolutions of a rotating body or turns in a coil.

Wikidata: Q76435127
Symbol: $N$
$$N = \frac{\theta}{2\pi}$$
$ N $
=
Number of revolutions (dimensionless)
$ \theta $
=
Angular displacement ccw (dimensionless)

ROTATIONAL_FREQUENCY ¤

ROTATIONAL_FREQUENCY = QtyKind(
    NUMBER_OF_REVOLUTIONS * S**-1
)
Wikidata: Q30338278
Symbol: $n$
$$n = \frac{dN}{dt}$$
$ N $
=
Number of revolutions (dimensionless)
$ t $
=

ANGULAR_FREQUENCY ¤

ANGULAR_FREQUENCY = QtyKind(RAD_PERS)
Wikidata: Q834020
Symbol: $\omega$
$$\omega = \frac{d\phi}{dt} = 2\pi f$$
$ \omega $
=
$ \phi $
=
Phase angle (dimensionless)
$ t $
=
$ f $
=

WAVELENGTH ¤

WAVELENGTH = PERIOD['wave']

Spatial period of a wave; the distance over which the wave's shape repeats; the inverse of the spatial frequency.

Wikidata: Q41364
Symbol: $\lambda$

WAVENUMBER ¤

WAVENUMBER = QtyKind(M ** -1, ('wave',))
Wikidata: Q192510
Symbols: $\tilde{\nu}$, $\sigma$
$$\tilde{\nu} = \frac{1}{\lambda}$$
$ \tilde{\nu} $
=
$ \lambda $
=

WAVEVECTOR ¤

WAVEVECTOR = QtyKind(M ** -1, ('wave', VECTOR))

Vector pointing in the direction of a wave and whose magnitude is equal to the wavenumber.

Wikidata: Q657009
Symbol: $\boldsymbol{k}$

ANGULAR_WAVENUMBER ¤

ANGULAR_WAVENUMBER = QtyKind(RAD * M ** -1, ('wave',))
Wikidata: Q30338487
Symbol: $k$
$$k = \frac{2\pi}{\lambda}$$
$ k $
=
$ \lambda $
=

ANGULAR_WAVEVECTOR ¤

ANGULAR_WAVEVECTOR = QtyKind(RAD * M**-1, ("wave", VECTOR))

See: https://en.wikipedia.org/wiki/Wave_vector

Symbol: $\boldsymbol{k}$

PHASE_SPEED ¤

PHASE_SPEED = SPEED['phase']
Wikidata: Q13824
Symbols: $c$, $v$, $c_\varphi$, $v_\varphi$
$$c = \frac{\omega}{k}$$
$ c $
=
$ \omega $
=
$ k $
=

GROUP_SPEED ¤

GROUP_SPEED = SPEED['group']

Speed at which a wave's envelope propagates in space.

Wikidata: Q217361
Symbols: $c_g$, $v_g$
$$c_g = \frac{\partial\omega}{\partial k}$$
$ c_g $
=
$ \omega $
=
$ k $
=

DAMPING_COEFFICIENT ¤

DAMPING_COEFFICIENT = QtyKind(
    S**-1, ("damping_coefficient",)
)
Wikidata: Q321828
Symbols: $\zeta$, $\delta$
$$\zeta = \frac{1}{\tau}$$
$ \zeta $
=
$ \tau $
=

LOGARITHMIC_DECREMENT ¤

LOGARITHMIC_DECREMENT = QtyKind(
    Dimensionless("logarithmic_decrement")
)

Measure for the damping of an oscillator.

Wikidata: Q1399446
Symbols: $\delta$, $\Lambda$
$$\delta = \zeta T$$
$ \delta $
=
Logarithmic decrement (dimensionless)
$ \zeta $
=
$ T $
=

ATTENUATION ¤

ATTENUATION = QtyKind(M ** -1, ('attenuation',))
Wikidata: Q902086
Symbol: $\alpha$
$$f(x)\propto e^{-\alpha x}$$
$ x $
=
$ \alpha $
=

PHASE_COEFFICIENT ¤

PHASE_COEFFICIENT = QtyKind(
    RAD * M**-1, ("phase_coefficient",)
)
Wikidata: Q32745742
Symbol: $\beta$
$$f(x)\propto\cos\beta(x-x_0)$$
$ x $
=
$ \beta $
=

PROPAGATION_CONSTANT ¤

PROPAGATION_CONSTANT = QtyKind(
    M**-1, ("propagation_constant", COMPLEX)
)
Wikidata: Q1434913
Symbol: $\gamma$
$$\gamma = \alpha + i\beta$$
$ \gamma $
=
$ \alpha $
=
$ \beta $
=

MASS ¤

MASS = QtyKind(KG)

Property of matter to resist changes of the state of motion and to attract other bodies.

Wikidata: Q11423
Symbol: $m$

DENSITY ¤

DENSITY = QtyKind(KG * M ** -3)
Wikidata: Q29539
Symbols: $\rho$, $\rho_m$
$$\rho(\boldsymbol{r}) = \frac{m}{V}$$
$ \rho $
=
$ \boldsymbol{r} $
=
$ m $
=
$ V $
=

SPECIFIC_VOLUME ¤

SPECIFIC_VOLUME = QtyKind(
    M**3 * KG**-1, ("specific_volume",)
)
Wikidata: Q683556
Symbol: $v$
$$v = \frac{1}{\rho}$$
$ v $
=
$ \rho $
=

REFERENCE_DENSITY ¤

REFERENCE_DENSITY = DENSITY['reference']

RELATIVE_DENSITY ¤

RELATIVE_DENSITY = Dimensionless('specific_gravity')
Wikidata: Q11027905
Symbols: $d$, $SG$
$$SG = \frac{\rho}{\rho_0}$$
$ SG $
=
Relative density (dimensionless)
$ \rho $
=
$ \rho_0 $
=

SURFACE_DENSITY ¤

SURFACE_DENSITY = QtyKind(
    KG * M**-2, ("density", "surface")
)
Wikidata: Q1907514
Symbol: $\rho_A$
$$\rho_A(\boldsymbol{r}) = \frac{dm}{dA}$$
$ \rho_A $
=
$ \boldsymbol{r} $
=
$ m $
=
$ A $
=
Area (meter²)

LINEAR_DENSITY ¤

LINEAR_DENSITY = QtyKind(KG * M**-1, ("density", "linear"))
Wikidata: Q56298294
Symbols: $\lambda_m$, $\rho_l$
$$\lambda_m(\boldsymbol{r}) = \frac{dm}{dL}$$
$ \lambda_m $
=
$ \boldsymbol{r} $
=
$ m $
=
$ L $
=

MOMENTUM ¤

MOMENTUM = QtyKind(KG * M_PERS, (VECTOR,))

Conserved physical quantity related to the motion of a body.

Wikidata: Q41273
Symbol: $\boldsymbol{p}$
$$\boldsymbol{p} = m\boldsymbol{v}$$
$ \boldsymbol{p} $
=
$ m $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)

FORCE ¤

FORCE = QtyKind(N, (VECTOR,))

Physical influence that tends to cause an object to change motion unless opposed by other forces.

Wikidata: Q11402
Symbol: $\boldsymbol{F}$
$$\boldsymbol{F} = m\boldsymbol{a}$$
$ \boldsymbol{F} $
=
$ m $
=
$ \boldsymbol{a} $
=

ACCELERATION_OF_FREE_FALL ¤

ACCELERATION_OF_FREE_FALL = QtyKind(
    M_PERS2, ("free_fall", VECTOR)
)

At a point on Earth, vector sum of gravitational and centrifugal acceleration.

Wikidata: Q103982270
Symbol: $\boldsymbol{g}$

WEIGHT ¤

WEIGHT = FORCE['weight']
Wikidata: Q25288
Symbols: $\boldsymbol{F}_g$, $\boldsymbol{W}$
$$\boldsymbol{W} = m\boldsymbol{g}$$
$ \boldsymbol{W} $
=
$ m $
=
$ \boldsymbol{g} $
=

FRICTION ¤

FRICTION = FORCE['friction']
Symbol: $\boldsymbol{F}_f$

STATIC_FRICTION ¤

STATIC_FRICTION = FRICTION['static']

Subconcept of friction.

Wikidata: Q90862568
Symbol: $\boldsymbol{F}_s$

KINETIC_FRICTION ¤

KINETIC_FRICTION = FRICTION['kinetic']

Force opposing the motion of a body sliding on a surface.

Wikidata: Q91005629
Symbol: $\boldsymbol{F}_\mu$

ROLLING_FRICTION ¤

ROLLING_FRICTION = FRICTION['rolling']

Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface.

Wikidata: Q914921
Symbol: $\boldsymbol{F}_{rr}$

DRAG ¤

DRAG = FORCE['drag']

Retarding force on a body moving in a fluid.

Wikidata: Q206621
Symbols: $\boldsymbol{F}_D$, $\boldsymbol{D}$

NORMAL_FORCE ¤

NORMAL_FORCE = FORCE['normal']

The component of a contact force that is perpendicular to the surface that an object contacts.

Symbol: $N$

TANGENTIAL_FORCE ¤

TANGENTIAL_FORCE = FORCE['tangential']

The component of a contact force that is parallel to the surface that an object contacts.

Symbol: $F_t$

COEFFICIENT_OF_STATIC_FRICTION ¤

COEFFICIENT_OF_STATIC_FRICTION = Dimensionless(
    "coefficient_of_friction_static"
)
Wikidata: Q73695673
Symbols: $\mu_s$, $f_s$
$$F_s \le \mu_s N$$
$ F_s $
=
$ \mu_s $
=
$ N $
=

COEFFICIENT_OF_KINETIC_FRICTION ¤

COEFFICIENT_OF_KINETIC_FRICTION = Dimensionless(
    "coefficient_of_friction_kinetic"
)
Wikidata: Q73695445
Symbols: $\mu_k$, $\mu$, $f$
$$F_k = \mu_k N$$
$ F_k $
=
$ \mu_k $
=
$ N $
=

ROLLING_RESISTANCE_FACTOR ¤

ROLLING_RESISTANCE_FACTOR = Dimensionless(
    "rolling_resistance_factor"
)
Wikidata: Q91738044
Symbol: $C_{rr}$
$$F_r = C_{rr} N$$
$ F_r $
=
$ C_{rr} $
=
Rolling resistance factor (dimensionless)
$ N $
=

DRAG_COEFFICIENT ¤

DRAG_COEFFICIENT = Dimensionless('drag_coefficient')

Dimensionless parameter to quantify fluid resistance.

Wikidata: Q1778961
Symbols: $C_D$, $c_d$ (for 2D flows)
$$F_D = \frac{1}{2} \rho v^2 S C_D$$
$ F_D $
=
Drag on body (newton)
$ \rho $
=
Density of fluid (kilogram · meter⁻³)
$ v $
=
Speed of body relative to fluid (meter · second⁻¹)
$ S $
=
Reference planform area (wetted, frontal, etc.) (meter²)
$ C_D $
=
Drag coefficient (dimensionless)

IMPULSE ¤

IMPULSE = QtyKind(N * S, (VECTOR,))
Wikidata: Q837940
Symbols: $\boldsymbol{J}$, $\boldsymbol{I}$
$$\boldsymbol{J} = \int_{t_1}^{t_2} \boldsymbol{F} dt = \boldsymbol{p}_2 - \boldsymbol{p}_1$$
$ \boldsymbol{J} $
=
$ t_1 $
=
$ t_2 $
=
$ \boldsymbol{F} $
=
$ t $
=
$ \boldsymbol{p} $
=

ANGULAR_MOMENTUM ¤

ANGULAR_MOMENTUM = QtyKind(J * S, (VECTOR,))

Measure of the extent to which an object will continue to rotate in the absence of an applied torque.

Wikidata: Q161254
Symbol: $\boldsymbol{L}$
$$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}$$
$ \boldsymbol{L} $
=
$ \boldsymbol{r} $
=
$ \boldsymbol{p} $
=

MOMENT_OF_FORCE ¤

MOMENT_OF_FORCE = QtyKind(N * M, ('moment', VECTOR))
Wikidata: Q17232562
Symbol: $\boldsymbol{M}$
$$\boldsymbol{M} = \boldsymbol{r} \times \boldsymbol{F}$$
$ \boldsymbol{M} $
=
$ \boldsymbol{r} $
=
$ \boldsymbol{F} $
=

TORQUE ¤

TORQUE = QtyKind(N * M, ('torque', VECTOR))

Tendency of a force to rotate an object; counterpart of force in rotational systems.

Wikidata: Q48103
Symbols: $T$, $M_Q$
$$T = \boldsymbol{M} \cdot \boldsymbol{e}_Q$$
$ T $
=
$ \boldsymbol{M} $
=
$ \boldsymbol{e}_Q $
=
Unit vector in the direction of the axis of rotation

ANGULAR_IMPULSE ¤

ANGULAR_IMPULSE = QtyKind(N * M * S, (VECTOR,))
Wikidata: Q73428743
Symbol: $\boldsymbol{H}$
$$\boldsymbol{H} = \int_{t_1}^{t_2} \boldsymbol{M} dt$$
$ \boldsymbol{H} $
=
$ t_1 $
=
$ t_2 $
=
$ \boldsymbol{M} $
=
$ t $
=

PRESSURE ¤

PRESSURE = QtyKind(PA)

The force applied perpendicular to the surface of an object per unit area. Also known as total pressure.

Wikidata: Q39552
Symbol: $p$
$$p = \frac{\boldsymbol{e}_n \boldsymbol{F}}{A}$$
$ p $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ \boldsymbol{F} $
=
$ A $
=
Area (meter²)

STATIC_PRESSURE ¤

STATIC_PRESSURE = PRESSURE['static']

Pressure in the absence of sound waves.

GAUGE_PRESSURE ¤

GAUGE_PRESSURE = PRESSURE['gauge']
Wikidata: Q331466
Symbols: $p_g$, $p_e$
$$p_g = p - p_\mathrm{s}$$
$ p_g $
=
$ p $
=
$ p_\mathrm{s} $
=

DYNAMIC_PRESSURE ¤

DYNAMIC_PRESSURE = PRESSURE['dynamic']

See: https://en.wikipedia.org/wiki/Dynamic_pressure

Symbols: $q$, $q$
$$q = \frac{1}{2} \rho v^2$$
$ \rho $
=
$ v $
=
Speed (meter · second⁻¹)
Assumptions: incompressible flow$$q = p_0 - p_s$$
$ p_0 $
=
$ p_s $
=

STRESS ¤

STRESS = QtyKind(PA, ('stress',))

STRESS_TENSOR ¤

STRESS_TENSOR = STRESS[TENSOR_SECOND_ORDER]

Tensor that describes the state of stress at a point inside a material.

Wikidata: Q13409892
Symbol: $\boldsymbol{\sigma}$

NORMAL_STRESS ¤

NORMAL_STRESS = QtyKind(PA, ('stress', 'normal'))
Wikidata: Q11425837
Symbol: $\sigma_n$
$$\sigma_n = \frac{dF_n}{dA}$$
$ \sigma_n $
=
$ F_n $
=
$ dA $
=

SHEAR_STRESS ¤

SHEAR_STRESS = QtyKind(PA, ('stress', 'shear'))

Component of stress coplanar with a material cross section.

Wikidata: Q657936
Symbols: $\tau$, $\tau_s$
$$\tau = \frac{dF_t}{dA}$$
$ \tau $
=
$ F_t $
=
$ dA $
=

STRAIN ¤

STRAIN = Dimensionless('strain')

STRAIN_TENSOR ¤

Symmetric tensor quantity of the strain caused by stress in matter.

Wikidata: Q3083131
Symbol: $\boldsymbol{\varepsilon}$

LINEAR_STRAIN ¤

LINEAR_STRAIN = Dimensionless('linear_strain')
Wikidata: Q1990546
Symbol: $\varepsilon$
$$\varepsilon = \frac{\Delta l}{l_0}$$
$ \varepsilon $
=
Linear strain (dimensionless)
$ l $
=

SHEAR_STRAIN ¤

SHEAR_STRAIN = Dimensionless('shear_strain')
Wikidata: Q7561704
Symbol: $\gamma$
$$\gamma = \frac{\Delta x}{d}$$
$ \gamma $
=
Shear strain (dimensionless)
$ \Delta x $
=
$ d $
=

VOLUMETRIC_STRAIN ¤

VOLUMETRIC_STRAIN = Dimensionless('volumetric_strain')
Wikidata: Q73432507
Symbol: $\vartheta$
$$\vartheta = \frac{\Delta V}{V_0}$$
$ \vartheta $
=
Volumetric strain (dimensionless)
$ V $
=

POISSONS_RATIO ¤

POISSONS_RATIO = Dimensionless('poissons_ratio')
Wikidata: Q190453
Symbols: $\nu$, $\mu$
$$\nu = -\frac{d\varepsilon_\text{trans}}{d\varepsilon_\text{axial}}$$
$ \nu $
=
Poissons ratio (dimensionless)
$ \varepsilon $
=
Linear strain (dimensionless)

YOUNGS_MODULUS ¤

YOUNGS_MODULUS = QtyKind(PA, ('youngs_modulus',))

A mechanical property that measures stiffness of a solid material.

Wikidata: Q2091584
Symbols: $E$, $E_m$, $Y$
$$E = \frac{\sigma}{\varepsilon}$$
$ \sigma $
=
$ \varepsilon $
=
Linear strain (dimensionless)

SHEAR_MODULUS ¤

SHEAR_MODULUS = QtyKind(PA, ('shear_modulus',))
Wikidata: Q461466
Symbol: $G$
$$G = \frac{\tau_{xy}}{\gamma_{xy}}$$
$ G $
=
$ \tau $
=
$ \gamma $
=
Shear strain (dimensionless)

BULK_MODULUS ¤

BULK_MODULUS = QtyKind(PA, ('bulk_modulus',))

Measure of how incompressible / resistant to compressibility a substance is.

Wikidata: Q900371
Symbols: $K$, $K_m$, $B$
$$K = -\frac{p}{\vartheta}$$
$ K $
=
$ p $
=
$ \vartheta $
=
Volumetric strain (dimensionless)

COMPRESSIBILITY ¤

COMPRESSIBILITY = QtyKind(PA ** -1, ('compressibility',))
Wikidata: Q8067817
Symbols: $\beta$, $\varkappa$
$$\beta = -\frac{1}{V} \frac{\partial V}{\partial p}$$
$ \beta $
=
$ V $
=
$ p $
=

MOMENT_OF_INERTIA ¤

MOMENT_OF_INERTIA = QtyKind(
    KG * M**2, (TENSOR_SECOND_ORDER,)
)
Wikidata: Q4454677
Symbols: $\boldsymbol{I}$, $\boldsymbol{J}$
$$\boldsymbol{L} = \boldsymbol{I} \cdot \boldsymbol{\omega}$$
$ \boldsymbol{L} $
=
$ \boldsymbol{I} $
=
$ \boldsymbol{\omega} $
=

SECOND_AXIAL_MOMENT_OF_AREA ¤

SECOND_AXIAL_MOMENT_OF_AREA = QtyKind(
    M**4, ("second_axial_moment_of_area",)
)

Property of an area reflecting how its points are distributed with respect to an axis.

Wikidata: Q91405496
Symbol: $I_a$
$$I_a = \iint_M \rho^2 dA$$
$ M $
=
2D domain of the cross-section of a plane
$ \rho $
=
$ dA $
=

SECOND_POLAR_MOMENT_OF_AREA ¤

SECOND_POLAR_MOMENT_OF_AREA = QtyKind(
    M**4, ("second_polar_moment_of_area",)
)

See: https://en.wikipedia.org/wiki/Second_polar_moment_of_area

Wikidata: Q1049636
Symbols: $J$, $I_p$
$$J = \iint_M \rho^2 dA$$
$ M $
=
2D domain of the cross-section of a plane
$ \rho $
=
$ dA $
=

SECTION_MODULUS ¤

SECTION_MODULUS = QtyKind(
    M**3, ("section_modulus", "elastic")
)

Concept in structural analysis.

Wikidata: Q1930808
Symbols: $S$, $W$
$$S = \frac{I_a}{\rho_\mathrm{max}}$$

DYNAMIC_VISCOSITY ¤

DYNAMIC_VISCOSITY = QtyKind(PA * S)

Physical property of a moving fluid.

Wikidata: Q15152757
Symbols: $\mu$, $\eta$
Assumptions: newtonian fluid$$\tau_{xz} = \mu \frac{\partial u_x}{\partial y}$$
$ \tau_{xz} $
=
$ u $
=
Velocity (meter · second⁻¹)
$ y $
=
Direction perpendicular to the plane of shear

KINEMATIC_VISCOSITY ¤

KINEMATIC_VISCOSITY = QtyKind(M ** 2 * S ** -1)

Characteristic of a fluid.

Wikidata: Q15106259
Symbol: $\nu$
$$\nu = \frac{\mu}{\rho}$$
$ \nu $
=
$ \rho $
=

SURFACE_TENSION ¤

SURFACE_TENSION = QtyKind(N * M**-1, ("surface_tension",))

Tendency of a liquid surface to shrink to reduce surface area.

Wikidata: Q170749
Symbols: $\gamma$, $\sigma$
$$\gamma = \frac{F}{L}$$
$ \gamma $
=
$ F $
=
$ L $
=

ENERGY ¤

ENERGY = QtyKind(J)

Quantitative property of a physical system, recognizable in the performance of work and in the form of heat and light.

Wikidata: Q11379
Symbol: $E$

POWER ¤

POWER = QtyKind(W)
Wikidata: Q80806956
Symbol: $P$
$$P = \boldsymbol{F}\cdot\boldsymbol{v}$$
$ P $
=
$ \boldsymbol{F} $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)

POTENTIAL_ENERGY ¤

POTENTIAL_ENERGY = ENERGY['potential']

Energy held by an object because of its position relative to other objects or stresses within itself, rather than its velocity.

Wikidata: Q155640
Symbols: $V$, $E_p$

KINETIC_ENERGY ¤

KINETIC_ENERGY = ENERGY['kinetic']

Energy of a moving physical body.

Wikidata: Q46276
Symbols: $T$, $E_k$
Assumptions: point object, classical mechanics, non-rotating$$T = \frac{1}{2} mv^2$$
$ T $
=
$ m $
=
$ v $
=
Speed (meter · second⁻¹)

MECHANICAL_ENERGY ¤

MECHANICAL_ENERGY = ENERGY['mechanical']
Wikidata: Q184550
Symbols: $E$, $W$
$$E = T + V$$

LINE_ELEMENT ¤

LINE_ELEMENT = QtyKind(
    M, (DIFFERENTIAL, "displacement", VECTOR)
)

See: https://en.wikipedia.org/wiki/Line_element

Symbol: $d\boldsymbol{s}$

WORK ¤

WORK = QtyKind(J, ('work',))

Energy transferred to an object via the application of force on it through a displacement.

Wikidata: Q42213
Symbols: $W$, $A$
$$W = \int_C \boldsymbol{F} \cdot d\boldsymbol{s}$$
$ W $
=
$ \boldsymbol{F} $
=
$ d\boldsymbol{s} $
=
$ C $
=
Continuous curve

MECHANICAL_EFFICIENCY ¤

MECHANICAL_EFFICIENCY = Dimensionless(
    "efficiency_mechanical"
)
Wikidata: Q2628085
Symbol: $\eta$
$$\eta = \frac{P_{\mathrm{out}}}{P_{\mathrm{in}}}$$
$ \eta $
=
Mechanical efficiency (dimensionless)
$ P $
=

MASS_FLUX_DENSITY ¤

MASS_FLUX_DENSITY = QtyKind(KG * M ** -2 * S ** -1)

MASS_FLUX ¤

MASS_FLUX = QtyKind(KG * M ** -2 * S ** -1, (VECTOR,))
Wikidata: Q3265048
Symbol: $\boldsymbol{j}_m$
$$\boldsymbol{j}_m = \rho \boldsymbol{v}$$
$ \boldsymbol{j}_m $
=
Mass flux (kilogram · meter⁻² · second⁻¹)
$ \rho $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)

MASS_FLOW_RATE ¤

MASS_FLOW_RATE = QtyKind(KG * S ** -1)
Wikidata: Q1366187
Symbols: $\dot{m}$, $q_m$
$$\dot{m} = \frac{dm}{dt} = \iint_A \boldsymbol{j}_m \cdot \boldsymbol{e}_n dA$$
$ \dot{m} $
=
$ m $
=
$ t $
=
$ A $
=
Area (meter²)
$ \boldsymbol{j}_m $
=
Mass flux (kilogram · meter⁻² · second⁻¹)
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

VOLUME_FLOW_RATE ¤

VOLUME_FLOW_RATE = QtyKind(M ** 3 * S ** -1)
Wikidata: Q1134348
Symbols: $\dot{V}$, $q_V$
$$\dot{V} = \frac{dV}{dt} = \iint_A \boldsymbol{v} \cdot \boldsymbol{e}_n dA$$
$ \dot{V} $
=
$ V $
=
$ t $
=
$ A $
=
Area (meter²)
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

ACTION ¤

ACTION = QtyKind(J * S, ('action',))
Wikidata: Q846785
Symbols: $\mathcal{S}$, $S$
$$\mathcal{S} = \int_{t_1}^{t_2} E dt$$
$ \mathcal{S} $
=
$ t_1 $
=
$ t_2 $
=
$ E $
=
$ t $
=

TEMPERATURE ¤

TEMPERATURE = QtyKind(K)

Thermodynamic temperature, an absolute measure of temperature.

Wikidata: Q264647
Symbols: $T$, $\theta$

SURFACE_TEMPERATURE ¤

SURFACE_TEMPERATURE = TEMPERATURE['surface']
Symbol: $T_s$

REFERENCE_TEMPERATURE ¤

REFERENCE_TEMPERATURE = TEMPERATURE[
    "reference", "surrounding"
]
Symbol: $T_r$

HOT_RESERVOIR_TEMPERATURE ¤

HOT_RESERVOIR_TEMPERATURE = TEMPERATURE['hot_reservoir']

Absolute temperature of hot reservoir.

Symbol: $T_H$

COLD_RESERVOIR_TEMPERATURE ¤

COLD_RESERVOIR_TEMPERATURE = TEMPERATURE['cold_reservoir']

Absolute temperature of cold reservoir.

Symbol: $T_C$

TEMPERATURE_DIFFERENCE ¤

TEMPERATURE_DIFFERENCE = TEMPERATURE[DELTA]
Symbol: $\Delta T$

LINEAR_EXPANSION_COEFFICIENT ¤

LINEAR_EXPANSION_COEFFICIENT = QtyKind(K**-1, ("linear",))
Wikidata: Q74760821
Symbol: $\alpha_l$
$$\alpha_l = \frac{1}{L} \frac{dL}{dT}$$
$ \alpha_l $
=
$ L $
=
$ T $
=

VOLUMETRIC_EXPANSION_COEFFICIENT ¤

VOLUMETRIC_EXPANSION_COEFFICIENT = QtyKind(
    K**-1, ("volumetric",)
)
Wikidata: Q74761076
Symbols: $\alpha_V$, $\gamma$
$$\alpha_V = \frac{1}{V} \frac{dV}{dT}$$
$ V $
=
$ T $
=

ISOTHERMAL_COMPRESSIBILITY ¤

ISOTHERMAL_COMPRESSIBILITY = COMPRESSIBILITY['isothermal']

Negative relative change of volume per change of pressure at constant temperature.

Wikidata: Q2990696
Symbols: $\beta_T$, $\varkappa_T$, $\kappa_T$
$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T$$
$ \beta_T $
=
$ V $
=
$ p $
=
$ T $
=

ISENTROPIC_COMPRESSIBILITY ¤

ISENTROPIC_COMPRESSIBILITY = COMPRESSIBILITY['isentropic']

Negative relative change of volume per change of pressure at constant entropy.

Wikidata: Q2990695
Symbols: $\beta_S$, $\varkappa_S$, $\kappa_S$
$$\beta_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S$$
$ \beta_S $
=
$ V $
=
$ p $
=
$ S $
=
Entropy (joule · kelvin⁻¹)

WORK_BY_SYSTEM ¤

WORK_BY_SYSTEM = WORK['by_system']

Work done by the system.

Symbol: $W$

WORK_ON_SYSTEM ¤

WORK_ON_SYSTEM = WORK['on_system']

Work done on the system.

Symbol: $W$

HEAT ¤

HEAT = QtyKind(J, ('heat',))

Energy that is transferred from one body to another as the result of a difference in temperature.

Wikidata: Q44432
Symbol: $Q$

HEAT_TO_SYSTEM ¤

HEAT_TO_SYSTEM = HEAT['to_system']

Heat transferred to the system.

Symbol: $Q$

INEXACT_DIFFERENTIAL_HEAT ¤

INEXACT_DIFFERENTIAL_HEAT = HEAT[INEXACT_DIFFERENTIAL]
Symbol: $\delta Q$

LATENT_HEAT ¤

LATENT_HEAT = HEAT['latent']

Released or absorbed energy during a constant-temperature process.

Wikidata: Q207721
Symbols: $L$, $Q$

SPECIFIC_LATENT_HEAT ¤

SPECIFIC_LATENT_HEAT = QtyKind(
    J * KG**-1, ("specific_latent_heat",)
)
Symbol: $l$

MOLAR_LATENT_HEAT ¤

MOLAR_LATENT_HEAT = QtyKind(
    J * MOL**-1, ("molar_latent_heat",)
)
Symbol: $L_m$

HEAT_FLOW_RATE ¤

HEAT_FLOW_RATE = QtyKind(W, ('heat_flow',))
Wikidata: Q12160631
Symbol: $\dot{Q}$

HEAT_FLUX ¤

HEAT_FLUX = QtyKind(W * M ** -2, ('heat_flux', VECTOR))
Wikidata: Q1478382
Symbols: $q$, $\varphi$
$$q = \frac{\dot{Q}}{A}$$
$ q $
=
Heat flux (watt · meter⁻²)
$ \dot{Q} $
=
$ A $
=
Area (meter²)

THERMAL_CONDUCTIVITY ¤

THERMAL_CONDUCTIVITY = QtyKind(W * M ** -1 * K ** -1)

Capacity of a material to conduct heat.

Wikidata: Q487005
Symbols: $\kappa$, $\lambda$, $\varkappa$
$$\boldsymbol{q} = -\kappa \nabla T$$
$ \boldsymbol{q} $
=
Heat flux (watt · meter⁻²)
$ \kappa $
=
$ T $
=

HEAT_TRANSFER_COEFFICIENT ¤

HEAT_TRANSFER_COEFFICIENT = QtyKind(W * M**-2 * K**-1)

Measure of heat transfer on a surface.

Wikidata: Q634340
Symbols: $h$, $\alpha$, $K$, $k$
$$h = \frac{|\boldsymbol{q}|}{T_s - T_r}$$
$ h $
=
$ \boldsymbol{q} $
=
Heat flux (watt · meter⁻²)

THERMAL_INSULANCE ¤

THERMAL_INSULANCE = QtyKind(M ** 2 * K * W ** -1)
Wikidata: Q2596212
Symbols: $M$, $R_\mathrm{si}$
$$R_\mathrm{si} = \frac{1}{h}$$
$ R_\mathrm{si} $
=
$ h $
=

THERMAL_RESISTANCE ¤

THERMAL_RESISTANCE = QtyKind(K * W ** -1)

Objects' resistance to heat transfer; reciprocal of thermal conductance.

Wikidata: Q899628
Symbol: $R$
$$R = \frac{\Delta T}{\dot{Q}}$$
$ R $
=
$ \Delta T $
=
$ \dot{Q} $
=

THERMAL_CONDUCTANCE ¤

THERMAL_CONDUCTANCE = QtyKind(W * K ** -1)

Objects' ability to transfer heat; reciprocal of thermal resistance.

Wikidata: Q17176562
Symbols: $G$, $H$
$$G = \frac{1}{R}$$
$ G $
=
$ R $
=

THERMAL_DIFFUSIVITY ¤

THERMAL_DIFFUSIVITY = QtyKind(M ** 2 * S ** -1)

Physical quantity that measures the rate of transfer of heat of a material from the hot side to the cold side.

Wikidata: Q3381809
Symbols: $a$, $\alpha$
$$\alpha = \frac{\kappa}{\rho c_p}$$
$ \alpha $
=
$ \kappa $
=
$ \rho $
=
$ c_p $
=

HEAT_CAPACITY ¤

HEAT_CAPACITY = QtyKind(J * K ** -1, ('heat_capacity',))

Thermal property describing the energy required to change a material's temperature.

Wikidata: Q179388
Symbol: $C$
$$C = \frac{\delta Q}{dT}$$
$ C $
=
$ \delta Q $
=
$ T $
=

HEAT_CAPACITY_P ¤

HEAT_CAPACITY_P = HEAT_CAPACITY['constant_pressure']

Heat capacity at constant pressure (isobaric).

Symbol: $C_p$

HEAT_CAPACITY_V ¤

HEAT_CAPACITY_V = HEAT_CAPACITY['constant_volume']

Heat capacity at constant volume (isochoric).

Symbol: $C_v$

SPECIFIC_HEAT_CAPACITY ¤

SPECIFIC_HEAT_CAPACITY = QtyKind(
    J * KG**-1 * K**-1, ("specific_heat_capacity",)
)
Wikidata: Q487756
Symbol: $c$
$$c = \frac{C}{m}$$
$ c $
=
$ C $
=
$ m $
=

SPECIFIC_HEAT_CAPACITY_P ¤

SPECIFIC_HEAT_CAPACITY_P = SPECIFIC_HEAT_CAPACITY[
    "constant_pressure"
]

Specific heat capacity at constant pressure (isobaric).

Wikidata: Q75774282
Symbol: $c_p$

SPECIFIC_HEAT_CAPACITY_V ¤

SPECIFIC_HEAT_CAPACITY_V = SPECIFIC_HEAT_CAPACITY[
    "constant_volume"
]

Specific heat capacity at constant volume (isochoric).

Wikidata: Q75774757
Symbol: $c_v$

SPECIFIC_HEAT_CAPACITY_SAT ¤

SPECIFIC_HEAT_CAPACITY_SAT = SPECIFIC_HEAT_CAPACITY[
    "saturation"
]
Wikidata: Q75775005
Symbol: $c_\text{sat}$

HEAT_CAPACITY_RATIO ¤

HEAT_CAPACITY_RATIO = Dimensionless('heat_capacity_ratio')

Thermodynamic ratio of isobaric to isochoric specific heat capacities.

Wikidata: Q503869
Symbols: $\gamma$, $\kappa$
$$\gamma = \frac{c_p}{c_v} = \frac{C_p}{C_v}$$
$ \gamma $
=
Heat capacity ratio (dimensionless)
$ c_p $
=
$ c_v $
=
$ C_p $
=
$ C_v $
=

ISENTROPIC_EXPONENT ¤

ISENTROPIC_EXPONENT = Dimensionless('isentropic_exponent')

The negative of the relative pressure change per relative volume change at constant entropy; for an ideal gas equal to the ratio of specific heat capacities.

Wikidata: Q75775739
Symbol: $\varkappa$
$$\varkappa = -\frac{V}{p} \left(\frac{\partial p}{\partial V}\right)_S$$
$ \varkappa $
=
Isentropic exponent (dimensionless)
$ V $
=
$ p $
=
$ S $
=
Entropy (joule · kelvin⁻¹)

ENTROPY ¤

ENTROPY = QtyKind(J * K ** -1, ('entropy',))

Physical property of the state of a system, measure of disorder.

Wikidata: Q45003, Q204570
Symbols: $S$, $S$, $H(X)$
$$S = k_B \ln W$$
$ S $
=
Entropy (joule · kelvin⁻¹)
$ k_B $
=
$ W $
=
Multiplicity (dimensionless)
Assumptions: reversible process$$dS = \frac{\delta Q_\text{rev}}{T}$$
$ S $
=
Entropy (joule · kelvin⁻¹)
$ \delta Q $
=
$ T $
=
$$H(X) = \sum_{i=1}^n p(x_i) I(x_i)$$
$ H(X) $
=
Entropy (joule · kelvin⁻¹)
$ p(x_i) $
=
Probability of event x_i
$ x_i $
=
Event i
$ I $
=
Information content (dimensionless)

SPECIFIC_ENTROPY ¤

SPECIFIC_ENTROPY = QtyKind(
    J * KG**-1 * K**-1, ("specific_entropy",)
)
Wikidata: Q69423705
Symbol: $s$
$$s = \frac{S}{m}$$
$ s $
=
$ S $
=
Entropy (joule · kelvin⁻¹)
$ m $
=

INTERNAL_ENERGY ¤

INTERNAL_ENERGY = ENERGY['internal']

State quantity, energy of a system whose change is the heat transferred to the system minus the work done by the system (closed system, no chemical reactions).

Wikidata: Q180241
Symbol: $U$
$$\Delta U = Q - W$$

ENTHALPY ¤

ENTHALPY = ENERGY['enthalpy']

Measure of energy in a thermodynamic system; thermodynamic quantity equivalent to the total heat content of a system.

Wikidata: Q161064
Symbol: $H$
$$H = U + pV$$
$ H $
=
$ p $
=
$ V $
=

HELMHOLTZ_ENERGY ¤

HELMHOLTZ_ENERGY = ENERGY['helmholtz']

Thermodynamic potential.

Wikidata: Q865821
Symbols: $A$, $A$, $A$, $F$
$$A = U - TS$$
$ T $
=
$ S $
=
Entropy (joule · kelvin⁻¹)
$$A = -k_B T \ln Z$$
$ k_B $
=
$ T $
=
$ Z $
=
$$A - \sum_\mathrm{B}\mu_\mathrm{B} n_\mathrm{B} = -k_B T \ln \Xi$$
$ k_B $
=
$ \mathrm{B} $
=
Substance
$ T $
=
$ \Xi $
=
$ \mu $
=

GIBBS_ENERGY ¤

GIBBS_ENERGY = ENERGY['gibbs']

Type of thermodynamic potential; useful for calculating reversible work in certain systems.

Wikidata: Q334631
Symbol: $G$
$$G = H - TS$$
$ G $
=
$ H $
=
$ T $
=
$ S $
=
Entropy (joule · kelvin⁻¹)

ACTIVATION_ENERGY ¤

ACTIVATION_ENERGY = ENERGY['activation']

SPECIFIC_ENERGY ¤

SPECIFIC_ENERGY = QtyKind(J * KG**-1, ("specific_energy",))

Physical quantity representing energy content per unit mass.

Wikidata: Q3023293
Symbol: $e$
$$e = \frac{E}{m}$$
$ e $
=
$ E $
=
$ m $
=

SPECIFIC_INTERNAL_ENERGY ¤

SPECIFIC_INTERNAL_ENERGY = SPECIFIC_ENERGY['internal']
Wikidata: Q76357367
Symbol: $u$
$$u = \frac{U}{m}$$
$ m $
=

SPECIFIC_ENTHALPY ¤

SPECIFIC_ENTHALPY = SPECIFIC_ENERGY['enthalpy']
Wikidata: Q21572993
Symbol: $h$
$$h = \frac{H}{m}$$
$ h $
=
$ H $
=
$ m $
=

SPECIFIC_HELMHOLTZ_ENERGY ¤

SPECIFIC_HELMHOLTZ_ENERGY = SPECIFIC_ENERGY['helmholtz']
Wikidata: Q76359554
Symbols: $a$, $f$
$$a = \frac{A}{m}$$

SPECIFIC_GIBBS_ENERGY ¤

SPECIFIC_GIBBS_ENERGY = SPECIFIC_ENERGY['gibbs']
Wikidata: Q76360636
Symbol: $g$
$$g = \frac{G}{m}$$
$ G $
=
$ m $
=

MASSIEU_FUNCTION ¤

MASSIEU_FUNCTION = QtyKind(
    J * K**-1, ("massieu_function",)
)
Wikidata: Q3077625
Symbol: $J$
$$J = -\frac{A}{T}$$
$ J $
=
$ T $
=

PLANCK_FUNCTION ¤

PLANCK_FUNCTION = QtyKind(J * K**-1, ("planck_function",))
Wikidata: Q76364998
Symbol: $Y$
$$Y = -\frac{G}{T}$$
$ Y $
=
$ G $
=
$ T $
=

JOULE_THOMSON_COEFFICIENT ¤

JOULE_THOMSON_COEFFICIENT = QtyKind(
    K * PA**-1, ("joule_thomson_coefficient",)
)
Wikidata: Q93946998
Symbol: $\mu_\mathrm{JT}$
$$\mu_\mathrm{JT} = \left(\frac{\partial T}{\partial p}\right)_H$$
$ \mu_\mathrm{JT} $
=
$ T $
=
$ p $
=
$ H $
=

THERMAL_EFFICIENCY ¤

THERMAL_EFFICIENCY = Dimensionless('efficiency_thermal')
Wikidata: Q1452104
Symbols: $\eta_\mathrm{th}$, $\eta$
$$\eta_\mathrm{th} = \frac{W}{Q}$$
$ \eta_\mathrm{th} $
=
Thermal efficiency (dimensionless)
$ W $
=
$ Q $
=

CARNOT_EFFICIENCY ¤

CARNOT_EFFICIENCY = Dimensionless(
    "efficiency_thermal_carnot"
)

Efficiency of an ideal heat engine operating according to the Carnot process.

Wikidata: Q93949862
Symbols: $(\eta_\text{th})_\mathrm{max}$, $\eta_\mathrm{max}$
$$(\eta_\text{th})_\mathrm{max} = 1 - \frac{T_C}{T_H}$$
$ (\eta_\text{th})_\mathrm{max} $
=
Carnot efficiency (dimensionless)

MASS_OF_SINGLE_PARTICLE ¤

MASS_OF_SINGLE_PARTICLE = MASS['single_particle']
Symbol: $m$

SPECIFIC_GAS_CONSTANT ¤

SPECIFIC_GAS_CONSTANT = QtyKind(
    J * KG**-1 * K**-1, ("specific_gas_constant",)
)
Wikidata: Q94372268
Symbols: $R$, $R_s$
$$R = \frac{k_B}{m}$$
$ R $
=
$ k_B $
=

MASS_CONCENTRATION ¤

MASS_CONCENTRATION = QtyKind(
    KG * M**-3, ("mass_concentration",)
)
Wikidata: Q589446
Symbols: $\rho$, $\gamma_X$
$$\rho_\mathrm{X} = \frac{m_\mathrm{X}}{V}$$
$ \rho $
=
$ m $
=
$ V $
=
$ \mathrm{X} $
=
Substance

WATER_MASS_CONCENTRATION ¤

WATER_MASS_CONCENTRATION = MASS_CONCENTRATION['water']
Wikidata: Q76378758
Symbol: $w$
$$w = \frac{m}{V}$$

WATER_VAPOUR_MASS ¤

WATER_VAPOUR_MASS = MASS['water_vapour']
Symbol: $m$

WATER_VAPOUR_MASS_CONCENTRATION ¤

WATER_VAPOUR_MASS_CONCENTRATION = MASS_CONCENTRATION[
    "water_vapour"
]
Wikidata: Q76378808
Symbol: $v$
$$v = \frac{m}{V}$$

WATER_VAPOUR_MASS_CONCENTRATION_AT_SATURATION ¤

WATER_VAPOUR_MASS_CONCENTRATION_AT_SATURATION = (
    WATER_VAPOUR_MASS_CONCENTRATION["saturation"]
)
Symbol: $v_\mathrm{sat}$

DRY_MATTER_MASS ¤

DRY_MATTER_MASS = MASS['dry_matter']
Symbol: $m_d$

WATER_TO_DRY_MATTER_MASS_RATIO ¤

WATER_TO_DRY_MATTER_MASS_RATIO = Dimensionless(
    "mass_ratio_water_to_dry_matter"
)
Wikidata: Q76378860
Symbol: $u$
$$u = \frac{m}{m_d}$$
$ u $
=

DRY_GAS_MASS ¤

DRY_GAS_MASS = MASS['dry_gas']
Symbol: $m_d$

WATER_VAPOUR_TO_DRY_GAS_MASS_RATIO ¤

WATER_VAPOUR_TO_DRY_GAS_MASS_RATIO = Dimensionless(
    "mass_ratio_water_vapour_to_dry_gas"
)

Physical / meteorological quantity.

Wikidata: Q17232415
Symbols: $r$, $x$
$$r = \frac{m}{m_d}$$

WATER_VAPOUR_TO_DRY_GAS_MASS_RATIO_AT_SATURATION ¤

WATER_VAPOUR_TO_DRY_GAS_MASS_RATIO_AT_SATURATION = (
    WATER_VAPOUR_TO_DRY_GAS_MASS_RATIO["saturation"]
)

Also known as mixing ratio.

Symbol: $r_\mathrm{sat}$

MASS_FRACTION ¤

MASS_FRACTION = Dimensionless('mass_fraction')
Wikidata: Q899138
Symbol: $w$
$$w_\mathrm{X} = \frac{m_\mathrm{X}}{m_\text{total}}$$
$ w $
=
Mass fraction (dimensionless)
$ m $
=
$ \mathrm{X} $
=
Substance

WATER_MASS_FRACTION ¤

WATER_MASS_FRACTION = MASS_FRACTION['water']
Wikidata: Q76379025
Symbol: $w_{\mathrm{H}_2\mathrm{O}}$
$$w_{\mathrm{H}_2\mathrm{O}} = \frac{u}{1 + u}$$
$ w_{\mathrm{H}_2\mathrm{O}} $
=
Water mass fraction (dimensionless)
$ u $
=

DRY_MATTER_MASS_FRACTION ¤

DRY_MATTER_MASS_FRACTION = MASS_FRACTION['dry_matter']
Wikidata: Q76379189
Symbol: $w_d$
$$w_d = 1 - w_{\mathrm{H}_2\mathrm{O}}$$
$ w_d $
=
Dry matter mass fraction (dimensionless)
$ w_{\mathrm{H}_2\mathrm{O}} $
=
Mass fraction (dimensionless)

PARTIAL_PRESSURE ¤

PARTIAL_PRESSURE = PRESSURE['partial']

Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature.

Wikidata: Q27165
Symbol: $p_X$

WATER_VAPOUR_PARTIAL_PRESSURE ¤

WATER_VAPOUR_PARTIAL_PRESSURE = PARTIAL_PRESSURE[
    "water_vapour"
]

Saturation vapour pressure of water.

Symbol: $p_{H_2O}$

SATURATION_WATER_VAPOUR_PARTIAL_PRESSURE ¤

SATURATION_WATER_VAPOUR_PARTIAL_PRESSURE = (
    WATER_VAPOUR_PARTIAL_PRESSURE["saturation"]
)
Symbol: $p_\mathrm{sat}$

RELATIVE_HUMIDITY ¤

RELATIVE_HUMIDITY = Dimensionless('relative_humidity')

Ratio of the partial pressure of water vapor in humid air to the equilibrium vapor pressure of water at a given temperature.

Wikidata: Q2499617
Symbols: $\mathrm{RH}$, $\phi$
$$\mathrm{RH} = \frac{p}{p_\mathrm{sat}}$$
$ \mathrm{RH} $
=
Relative humidity (dimensionless)

RELATIVE_MASS_CONCENTRATION_VAPOUR ¤

RELATIVE_MASS_CONCENTRATION_VAPOUR = Dimensionless(
    "relative_mass_concentration_vapour"
)

Quotient of the mass concentration of water vapor and the mass concentration at saturation at a given temperature.

Wikidata: Q76379357
Symbol: $\phi$
$$\phi = \frac{v}{v_\mathrm{sat}}$$

RELATIVE_MASS_RATIO_VAPOUR ¤

RELATIVE_MASS_RATIO_VAPOUR = Dimensionless(
    "relative_mass_ratio_vapour"
)

Quotient of the mass ratio of water vapor to dry air and the mass ratio of water vapor to dry air at saturation at a given temperature. Approximation to relative humidity.

Wikidata: Q76379414
Symbol: $\psi$
$$\psi = \frac{r}{r_\mathrm{sat}}$$
$ \psi $
=
$ r $
=
$ r_\mathrm{sat} $
=

DEW_POINT ¤

DEW_POINT = TEMPERATURE['dew_point']

The temperature at which air becomes saturated with water vapour.

Wikidata: Q178828
Symbol: $T_d$

CURRENT ¤

CURRENT = QtyKind(A)

Base quantity of the International System of Quantities (ISQ), measured in ampere (A).

Wikidata: Q29996
Symbols: $I$, $i$
$$I = \frac{dq}{dt}$$
$ I $
=
$ t $
=

INSTANTANEOUS_CURRENT ¤

INSTANTANEOUS_CURRENT = CURRENT['instantaneous']
Symbol: $i(t)$

RMS_CURRENT ¤

RMS_CURRENT = CURRENT['rms']

Root mean square current.

Symbol: $I_\mathrm{rms}$

ELECTRIC_CHARGE ¤

ELECTRIC_CHARGE = QtyKind(C)

Physical property that quantifies an object's interaction with electric fields.

Wikidata: Q1111
Symbols: $Q$, $q$

CHARGE_DENSITY ¤

CHARGE_DENSITY = QtyKind(C * M ** -3)
Wikidata: Q69425629
Symbol: $\rho$
$$\rho(\boldsymbol{r}) = \frac{dq}{dV}$$
$ \rho $
=
$ \boldsymbol{r} $
=
$ V $
=

SURFACE_CHARGE_DENSITY ¤

SURFACE_CHARGE_DENSITY = QtyKind(C * M ** -2)
Wikidata: Q12799324
Symbol: $\sigma$
$$\sigma(\boldsymbol{r}) = \frac{dq}{dA}$$
$ \sigma $
=
$ \boldsymbol{r} $
=
$ A $
=
Area (meter²)

LINEAR_CHARGE_DENSITY ¤

LINEAR_CHARGE_DENSITY = QtyKind(C * M ** -1)
Wikidata: Q77267838
Symbols: $\lambda$, $\tau$
$$\lambda(\boldsymbol{r}) = \frac{dq}{dl}$$
$ \lambda $
=
$ \boldsymbol{r} $
=
$ l $
=

ELECTRIC_DIPOLE_MOMENT ¤

ELECTRIC_DIPOLE_MOMENT = QtyKind(C * M, (VECTOR,))

Vector physical quantity measuring the separation of positive and negative electrical charges within a system.

Wikidata: Q735135
Symbol: $\boldsymbol{p}$
$$\boldsymbol{p} = q(r_+ - r_-)$$
$ \boldsymbol{p} $
=
$ r $
=

POLARIZATION_DENSITY ¤

POLARIZATION_DENSITY = QtyKind(
    C * M**-2, ("polarization", VECTOR)
)
Wikidata: Q1050425
Symbol: $\boldsymbol{P}$
$$\boldsymbol{P}(\boldsymbol{r}) = \frac{d\boldsymbol{p}}{dV}$$
$ \boldsymbol{P} $
=
$ \boldsymbol{r} $
=
$ \boldsymbol{p} $
=
$ V $
=

CURRENT_DENSITY ¤

CURRENT_DENSITY = QtyKind(A * M ** -2, (VECTOR,))
Wikidata: Q234072
Symbols: $\boldsymbol{J}$, $\boldsymbol{J}$
$$\boldsymbol{J}(\boldsymbol{r}) = \rho \boldsymbol{v}$$
$ \boldsymbol{J} $
=
$ \boldsymbol{r} $
=
$ \rho $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$$I = \int_S \boldsymbol{J} \cdot \boldsymbol{e}_n dA$$
$ I $
=
$ \boldsymbol{J} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ S $
=
Surface
$ dA $
=

LINEAR_CURRENT_DENSITY ¤

LINEAR_CURRENT_DENSITY = QtyKind(A * M ** -1, (VECTOR,))
Wikidata: Q2356741
Symbol: $\boldsymbol{J}_s$
$$\boldsymbol{J}_s = \sigma \boldsymbol{v}$$
$ \boldsymbol{J}_s $
=
$ \sigma $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)

ELECTRIC_FIELD_STRENGTH ¤

ELECTRIC_FIELD_STRENGTH = QtyKind(V * M ** -1, (VECTOR,))

Vector physical quantity of electrostatics and electrodynamics.

Wikidata: Q20989
Symbol: $\boldsymbol{E}$
$$\boldsymbol{E}(\boldsymbol{r}) = \frac{\boldsymbol{F}}{q}$$
$ \boldsymbol{E} $
=
$ \boldsymbol{r} $
=
$ \boldsymbol{F} $
=

ELECTRIC_POTENTIAL ¤

ELECTRIC_POTENTIAL = QtyKind(V, ('potential',))

Line integral of the electric field.

Wikidata: Q55451
Symbols: $V$, $\varphi$
$$-\nabla V = \boldsymbol{E} + \frac{\partial \boldsymbol{A}}{\partial t}$$
$ \boldsymbol{E} $
=
$ \boldsymbol{A} $
=
$ t $
=

ELECTRIC_POTENTIAL_DIFFERENCE ¤

ELECTRIC_POTENTIAL_DIFFERENCE = QtyKind(
    V, ("potential", DELTA)
)
Wikidata: Q77597807
Symbols: $V_\mathrm{ab}$, $V_\mathrm{ab}$
$$V_\mathrm{ab} = V_\mathrm{a} - V_\mathrm{b}$$
$ V_\mathrm{ab} $
=
$$V_\mathrm{ab} = \int_C \left(\boldsymbol{E} + \frac{\partial \boldsymbol{A}}{\partial t}\right) \cdot d\boldsymbol{r}$$
$ V_\mathrm{ab} $
=
$ \boldsymbol{E} $
=
$ \boldsymbol{A} $
=
$ t $
=
$ d\boldsymbol{r} $
=

VOLTAGE ¤

VOLTAGE = QtyKind(V, (DELTA,))

In circuit theory, for a conductor, electric potential difference between two points.

Wikidata: Q118309876
Symbols: $U$, $u$
Assumptions: conductor$$U = V_\mathrm{ab}$$
$ U $
=
$ V_\mathrm{ab} $
=

INDUCED_VOLTAGE ¤

INDUCED_VOLTAGE = VOLTAGE['induced']

See: https://en.wikipedia.org/wiki/Electromagnetic_induction

Wikidata: Q1097002
Symbols: $\mathcal{E}$, $\mathcal{E}$, $U_i$
$$\mathcal{E} = -\frac{d}{dt}\int_C \boldsymbol{A} \cdot d\boldsymbol{r}$$
$ \mathcal{E} $
=
$ t $
=
$ \boldsymbol{A} $
=
$ d\boldsymbol{r} $
=
Assumptions: closed loop$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$
$ \mathcal{E} $
=
$ t $
=
$ \Phi_B $
=

INSTANTANEOUS_VOLTAGE ¤

INSTANTANEOUS_VOLTAGE = VOLTAGE['instantaneous']
Symbol: $u(t)$

RMS_VOLTAGE ¤

RMS_VOLTAGE = VOLTAGE['rms']

Root mean square voltage.

Symbol: $U_\mathrm{rms}$

ELECTRIC_FLUX_DENSITY ¤

ELECTRIC_FLUX_DENSITY = QtyKind(
    C * M**-2, ("flux_density", VECTOR)
)

Vector field related to displacement current and flux density.

Wikidata: Q371907
Symbols: $\boldsymbol{D}$, $\boldsymbol{D}$
$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$$
$ \boldsymbol{D} $
=
$ \varepsilon_0 $
=
$ \boldsymbol{E} $
=
$ \boldsymbol{P} $
=
$$\nabla \cdot \boldsymbol{D} = \rho$$
$ \boldsymbol{D} $
=
$ \rho $
=

CAPACITANCE ¤

CAPACITANCE = QtyKind(F)

Ability of a body to store electrical charge.

Wikidata: Q164399
Symbol: $C$
$$C = \frac{q}{U}$$
$ C $
=
$ U $
=

PERMITTIVITY ¤

PERMITTIVITY = QtyKind(F * M ** -1)

Physical quantity, measure of the resistance to the electric field.

Wikidata: Q211569
Symbol: $\varepsilon$
$$\boldsymbol{D} = \varepsilon \boldsymbol{E}$$
$ \boldsymbol{D} $
=
$ \varepsilon $
=
$ \boldsymbol{E} $
=

RELATIVE_PERMITTIVITY ¤

RELATIVE_PERMITTIVITY = Dimensionless(
    "relative_permittivity"
)
Wikidata: Q4027242
Symbol: $\varepsilon_r$
$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$
$ \varepsilon_r $
=
Relative permittivity (dimensionless)
$ \varepsilon $
=
$ \varepsilon_0 $
=

ELECTRIC_SUSCEPTIBILITY ¤

ELECTRIC_SUSCEPTIBILITY = Dimensionless(
    "electric_susceptibility"
)

Degree of polarization.

Wikidata: Q598305
Symbols: $\chi$, $\chi_\mathrm{e}$
$$\boldsymbol{P} = \varepsilon_0 \chi_\mathrm{e} \boldsymbol{E}$$
$ \boldsymbol{P} $
=
$ \varepsilon_0 $
=
$ \chi_\mathrm{e} $
=
Electric susceptibility (dimensionless)
$ \boldsymbol{E} $
=

ELECTRIC_FLUX ¤

ELECTRIC_FLUX = QtyKind(C, ('flux',))

Surface integral of the electric flux density; measured in coulombs.

Wikidata: Q501267
Symbols: $\Psi$, $\Phi_E$
$$\Phi_E = \iint_S \boldsymbol{D} \cdot \boldsymbol{e}_n dA$$
$ \Phi_E $
=
$ \boldsymbol{D} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

DISPLACEMENT_CURRENT_DENSITY ¤

DISPLACEMENT_CURRENT_DENSITY = CURRENT_DENSITY[
    "displacement"
]
Wikidata: Q77614612
Symbol: $\boldsymbol{J}_D$
$$\boldsymbol{J}_D = \frac{\partial \boldsymbol{D}}{\partial t}$$
$ \boldsymbol{J}_D $
=
$ \boldsymbol{D} $
=
$ t $
=

DISPLACEMENT_CURRENT ¤

DISPLACEMENT_CURRENT = CURRENT['displacement']
Wikidata: Q853178
Symbol: $I_D$
$$I_D = \iint_S \boldsymbol{J}_D \cdot \boldsymbol{e}_n dA$$
$ S $
=
Surface
$ \boldsymbol{J}_D $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

TOTAL_CURRENT ¤

TOTAL_CURRENT = CURRENT['total']
Wikidata: Q77679732
Symbols: $I_\text{total}$, $I_t$
$$I_\text{total} = I + I_D$$
$ I_\text{total} $
=
$ I $
=

TOTAL_CURRENT_DENSITY ¤

TOTAL_CURRENT_DENSITY = CURRENT_DENSITY['total']
Wikidata: Q77680811
Symbols: $\boldsymbol{J}_\text{total}$, $\boldsymbol{J}_t$
$$\boldsymbol{J}_\text{total} = \boldsymbol{J} + \boldsymbol{J}_D$$
$ \boldsymbol{J}_\text{total} $
=
$ \boldsymbol{J} $
=
$ \boldsymbol{J}_D $
=

MAGNETIC_FLUX_DENSITY ¤

MAGNETIC_FLUX_DENSITY = QtyKind(
    T, ("flux_density", VECTOR)
)

Vector physical quantity describing production of a potential difference across a conductor when it is exposed to a varying magnetic field.

Wikidata: Q30204
Symbol: $\boldsymbol{B}$
$$\boldsymbol{F} = q \boldsymbol{v} \times \boldsymbol{B}$$
$ \boldsymbol{F} $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$ \boldsymbol{B} $
=

MAGNETIC_FLUX ¤

MAGNETIC_FLUX = QtyKind(WB)
Wikidata: Q177831
Symbols: $\Phi$, $\Phi_B$, $\Phi_B$
$$\Phi_B = \iint_S \boldsymbol{B} \cdot \boldsymbol{e}_n dA$$
$ \Phi_B $
=
$ \boldsymbol{B} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=
$$\Phi_B = \int_C \boldsymbol{A} \cdot d\boldsymbol{r}$$
$ \Phi_B $
=
$ C $
=
Curve
$ \boldsymbol{A} $
=
$ d\boldsymbol{r} $
=

PROTOFLUX ¤

PROTOFLUX = QtyKind(WB, ('proto',))

Integral of the magnetic vector potential along a path.

Wikidata: Q118540114
Symbols: $\Phi_p$, $\Psi_p$
$$\Phi_p = \int_C \boldsymbol{A} \cdot d\boldsymbol{r}$$
$ \Phi_p $
=
$ C $
=
Curve
$ \boldsymbol{A} $
=
$ d\boldsymbol{r} $
=

LINKED_MAGNETIC_FLUX ¤

LINKED_MAGNETIC_FLUX = MAGNETIC_FLUX['linked']

See: https://en.wikipedia.org/wiki/Flux_linkage

Wikidata: Q118574738
Symbols: $\Phi_L$, $\lambda$
$$\lambda = N \Phi_B$$
$ \lambda $
=
$ N $
=
N turns winding (dimensionless)
$ \Phi_B $
=

TOTAL_MAGNETIC_FLUX ¤

TOTAL_MAGNETIC_FLUX = MAGNETIC_FLUX['total']

Highest value of magnetic flux produced by a current loop in circuit theory. The definition is consistent with the more general definition of linked flux.

Wikidata: Q118255404
Symbols: $\Psi$, $\Phi_{AB}$
$$\Phi_{AB} = \int_{t_1}^{t_2} u_{AB}(\tau) d\tau$$
$ \Phi_{AB} $
=
$ t_1 $
=
$ t_2 $
=
$ u $
=
$ \tau $
=

MAGNETIC_MOMENT ¤

MAGNETIC_MOMENT = QtyKind(A * M ** 2, (VECTOR,))
Wikidata: Q242657
Symbol: $\boldsymbol{m}$
Assumptions: infinitesimal planar current loop$$\boldsymbol{m} = I \boldsymbol{e}_n A$$
$ \boldsymbol{m} $
=
$ I $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ A $
=
Area (meter²)

MAGNETIZATION ¤

MAGNETIZATION = QtyKind(
    A * M**-1, ("magnetization", VECTOR)
)
Wikidata: Q856711
Symbols: $\boldsymbol{M}$, $\boldsymbol{H}_i$
$$\boldsymbol{M}(\boldsymbol{r}) = \frac{d\boldsymbol{m}}{dV}$$
$ \boldsymbol{M} $
=
$ \boldsymbol{r} $
=
$ \boldsymbol{m} $
=
$ V $
=

MAGNETIC_FIELD_STRENGTH ¤

MAGNETIC_FIELD_STRENGTH = QtyKind(
    A * M**-1, ("magnetic_field_strength", VECTOR)
)

Strength of a magnetic field.

Wikidata: Q28123
Symbols: $\boldsymbol{H}$, $\boldsymbol{H}$
$$\boldsymbol{H} = \frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M}$$
$ \boldsymbol{H} $
=
$ \boldsymbol{B} $
=
$ \mu_0 $
=
$ \boldsymbol{M} $
=
$$\nabla \times \boldsymbol{H} = \boldsymbol{J}_\text{total}$$
$ \boldsymbol{H} $
=
$ \boldsymbol{J}_\text{total} $
=

PERMEABILITY ¤

PERMEABILITY = QtyKind(H * M ** -1)

Measure of the ability of a material to support the formation of a magnetic field within itself.

Wikidata: Q28352
Symbol: $\mu$
Assumptions: linear isotropic media$$\boldsymbol{B} = \mu \boldsymbol{H}$$
$ \boldsymbol{B} $
=
$ \mu $
=
$ \boldsymbol{H} $
=

RELATIVE_PERMEABILITY ¤

RELATIVE_PERMEABILITY = Dimensionless(
    "relative_permeability"
)
Wikidata: Q77785645
Symbol: $\mu_\mathrm{r}$
Assumptions: linear isotropic media$$\mu_\mathrm{r} = \frac{\mu}{\mu_0}$$
$ \mu_\mathrm{r} $
=
Relative permeability (dimensionless)
$ \mu $
=
$ \mu_0 $
=

MAGNETIC_SUSCEPTIBILITY ¤

MAGNETIC_SUSCEPTIBILITY = Dimensionless(
    "magnetic_susceptibility"
)

Measure of how much a material will become magnetized in an applied magnetic field.

Wikidata: Q691463
Symbols: $\kappa$, $\chi_\mathrm{m}$
Assumptions: linear isotropic media$$\boldsymbol{M} = \chi_\mathrm{m} \boldsymbol{H}$$
$ \boldsymbol{M} $
=
$ \chi_\mathrm{m} $
=
Magnetic susceptibility (dimensionless)
$ \boldsymbol{H} $
=

MAGNETIC_POLARIZATION ¤

MAGNETIC_POLARIZATION = QtyKind(
    T, ("polarization", VECTOR)
)
Wikidata: Q1884336
Symbol: $\boldsymbol{J}_m$
$$\boldsymbol{J}_m = \mu_0 \boldsymbol{M}$$
$ \boldsymbol{J}_m $
=
$ \mu_0 $
=
$ \boldsymbol{M} $
=

MAGNETIC_DIPOLE_MOMENT ¤

MAGNETIC_DIPOLE_MOMENT = QtyKind(WB * M, (VECTOR,))

Physical quantity; measured in weber metre.

Wikidata: Q71008556
Symbols: $\boldsymbol{j}_m$, $\boldsymbol{j}$
$$\boldsymbol{j}_m = \mu_0 \boldsymbol{m}$$
$ \boldsymbol{j}_m $
=
$ \mu_0 $
=
$ \boldsymbol{m} $
=

COERCIVITY ¤

COERCIVITY = QtyKind(A * M ** -1, ('coercivity',))

Measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Wikidata: Q432635
Symbol: $H_c$

MAGNETIC_VECTOR_POTENTIAL ¤

MAGNETIC_VECTOR_POTENTIAL = QtyKind(WB * M**-1, (VECTOR,))
Wikidata: Q2299100
Symbol: $\boldsymbol{A}$
$$\boldsymbol{B} = \nabla \times \boldsymbol{A}$$
$ \boldsymbol{B} $
=
$ \boldsymbol{A} $
=

ENERGY_DENSITY ¤

ENERGY_DENSITY = QtyKind(J * M**-3, ("energy_density",))

ELECTROMAGNETIC_ENERGY_DENSITY ¤

ELECTROMAGNETIC_ENERGY_DENSITY = ENERGY_DENSITY[
    "electromagnetic"
]
Wikidata: Q77989624
Symbols: $w_\mathrm{e}$, $w$
$$w_\mathrm{e} = \frac{1}{2}(\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{B} \cdot \boldsymbol{H})$$
$ w_\mathrm{e} $
=
$ \boldsymbol{E} $
=
$ \boldsymbol{D} $
=
$ \boldsymbol{B} $
=
$ \boldsymbol{H} $
=

POYNTING_VECTOR ¤

POYNTING_VECTOR = QtyKind(W * M**-2, ("poynting", VECTOR))

Measure of directional energy flux.

Wikidata: Q504186
Symbol: $\boldsymbol{S}$
$$\boldsymbol{S} = \boldsymbol{E} \times \boldsymbol{H}$$
$ \boldsymbol{S} $
=
$ \boldsymbol{E} $
=
$ \boldsymbol{H} $
=

SPEED_OF_LIGHT ¤

SPEED_OF_LIGHT = PHASE_SPEED['light']

Phase speed of an electromagnetic wave in a medium.

Wikidata: Q9092845
Symbol: $c$

SOURCE_VOLTAGE ¤

SOURCE_VOLTAGE = VOLTAGE['ideal_source']

Scalar physical quantity homogeneous to a voltage, expressing the modulus of the force exerted on a charge in an electric field.

Wikidata: Q185329
Symbol: $U_s$

MAGNETIC_POTENTIAL ¤

MAGNETIC_POTENTIAL = QtyKind(A, ('magnetic_potential',))

Scalar potential whose negative gradient is the magnetic field strength.

Wikidata: Q17162107
Symbols: $V_m$, $\varphi$
Assumptions: irrotational magnetic field strength$$\boldsymbol{H} = -\nabla V_m$$
$ \boldsymbol{H} $
=

MAGNETIC_TENSION ¤

MAGNETIC_TENSION = QtyKind(A, ('magnetic_tension',))
Wikidata: Q77993836
Symbol: $U_m$
$$U_m = \int_C \boldsymbol{H} \cdot d\boldsymbol{r}$$
$ U_m $
=
$ C $
=
Curve
$ \boldsymbol{H} $
=
$ d\boldsymbol{r} $
=

N_TURNS_WINDING ¤

N_TURNS_WINDING = Dimensionless('n_turns_winding')
Wikidata: Q77995997
Symbol: $N$

MAGNETOMOTIVE_FORCE ¤

MAGNETOMOTIVE_FORCE = QtyKind(A, ('magnetomotive_force',))

A quantity representing the sum of magnetizing forces along a circuit.

Wikidata: Q1266982
Symbol: $\mathcal{F}_m$
$$\mathcal{F}_m = \oint_C \boldsymbol{H} \cdot d\boldsymbol{r}$$
$ \mathcal{F}_m $
=
$ C $
=
Closed curve
$ \boldsymbol{H} $
=
$ d\boldsymbol{r} $
=

RELUCTANCE ¤

RELUCTANCE = QtyKind(H ** -1)

In physics, the ratio of magnetomotive force to magnetic flux; the magnetic analogue of electrical resistance.

Wikidata: Q863390
Symbols: $R_m$, $\mathcal{R}$
$$\mathcal{R} = \frac{U_m}{\Phi_M}$$
$ \mathcal{R} $
=
$ U_m $
=
$ \Phi_M $
=

PERMEANCE ¤

PERMEANCE = QtyKind(H, ('permeance',))
Wikidata: Q77997985
Symbols: $\mathcal{P}$, $\Lambda$
$$\mathcal{P} = \frac{1}{\mathcal{R}}$$
$ \mathcal{P} $
=
$ \mathcal{R} $
=

INDUCTANCE ¤

INDUCTANCE = QtyKind(H, ('inductance',))

Property of electrical conductors to oppose changes in current flow.

Wikidata: Q177897
Symbols: $L$, $L_m$
$$L = \frac{\Psi_{AB}}{I}$$
$ L $
=
$ \Psi $
=
$ I $
=

MUTUAL_INDUCTANCE ¤

MUTUAL_INDUCTANCE = INDUCTANCE['mutual']
Wikidata: Q78101401
Symbol: $L_{mn}$
$$L_{mn} = \frac{\Phi_m}{I_n}$$
$ L_{mn} $
=
$ m $
=
Thin conducting loop 1
$ n $
=
Thin conducting loop 2
$ I $
=

COUPLING_FACTOR ¤

COUPLING_FACTOR = Dimensionless('coupling_factor')
Wikidata: Q78101715
Symbol: $k$
$$k = \frac{|L_{mn}|}{\sqrt{L_m L_n}}$$
$ k $
=
Coupling factor (dimensionless)
$ L_{mn} $
=
$ m $
=
Thin conducting loop 1
$ n $
=
Thin conducting loop 2
$ L $
=

LEAKAGE_FACTOR ¤

LEAKAGE_FACTOR = Dimensionless('leakage_factor')
Wikidata: Q78102042
Symbol: $\sigma$
$$\sigma = 1 - k^2$$
$ \sigma $
=
Leakage factor (dimensionless)
$ k $
=
Coupling factor (dimensionless)

CONDUCTIVITY ¤

CONDUCTIVITY = QtyKind(SIEMENS * M ** -1)

Physical quantity and property of material describing how readily a given material allows the flow of electric current.

Wikidata: Q4593291
Symbols: $\sigma$, $\kappa$
$$\boldsymbol{J} = \sigma \boldsymbol{E}$$
$ \boldsymbol{J} $
=
$ \sigma $
=
$ \boldsymbol{E} $
=

RESISTIVITY ¤

RESISTIVITY = QtyKind(OHM * M)
Wikidata: Q108193
Symbol: $\rho$
$$\rho = \frac{1}{\sigma}$$
$ \rho $
=
$ \sigma $
=

INSTANTANEOUS_POWER ¤

INSTANTANEOUS_POWER = POWER['instantaneous']
Wikidata: Q11784325
Symbols: $P(t)$, $p$
$$P(t) = u(t) i(t)$$

RESISTANCE ¤

RESISTANCE = QtyKind(OHM)

Opposition to the passage of an electric current.

Wikidata: Q25358
Symbol: $R$
Assumptions: ohmic device$$R = \frac{U}{I}$$
$ R $
=
$ U $
=
$ I $
=

CONDUCTANCE ¤

CONDUCTANCE = QtyKind(SIEMENS, ('conductance',))
Wikidata: Q309017
Symbol: $G$
Assumptions: ohmic device$$G = \frac{1}{R}$$
$ G $
=
$ R $
=

VOLTAGE_PHASE_ANGLE ¤

VOLTAGE_PHASE_ANGLE = PHASE_ANGLE[VOLTAGE]
Symbol: $\phi_u$

CURRENT_PHASE_ANGLE ¤

CURRENT_PHASE_ANGLE = PHASE_ANGLE[CURRENT]
Symbol: $\phi_i$

PHASE_DIFFERENCE ¤

PHASE_DIFFERENCE = PHASE_ANGLE[DELTA]
Wikidata: Q78514588
Symbol: $\phi$
$$\phi = \phi_u - \phi_i$$
$ \phi $
=
Phase difference (dimensionless)
$ \phi_u $
=
Voltage phase angle (dimensionless)
$ \phi_i $
=
Current phase angle (dimensionless)

CURRENT_PHASOR ¤

CURRENT_PHASOR = CURRENT['phasor', COMPLEX]

Complex representation of an oscillating electric current.

Wikidata: Q78514596
Symbol: $\underline{I}$
$$\underline{I} = \hat{I} e^{j\phi}$$
$ \underline{I} $
=
$ \hat{I} $
=
Amplitude
$ \phi $
=
Phase angle (dimensionless)

VOLTAGE_PHASOR ¤

VOLTAGE_PHASOR = VOLTAGE['phasor', COMPLEX]

Complex representation of an oscillating voltage.

Wikidata: Q78514605
Symbol: $\underline{U}$
$$\underline{U} = \hat{U} e^{j\phi}$$
$ \underline{U} $
=
$ \hat{U} $
=
Amplitude
$ \phi $
=
Phase angle (dimensionless)

IMPEDANCE ¤

IMPEDANCE = QtyKind(OHM, ('impedance', COMPLEX))
Wikidata: Q179043
Symbol: $\underline{Z}$
$$\underline{Z} = \frac{\underline{U}}{\underline{I}}$$
$ \underline{Z} $
=
$ \underline{U} $
=
$ \underline{I} $
=

IMPEDANCE_APPARENT ¤

IMPEDANCE_APPARENT = QtyKind(OHM, ("impedance", "apparent"))
Wikidata: Q119313368
Symbol: $Z$
$$Z = \frac{V_\mathrm{rms}}{I_\mathrm{rms}}$$
$ V_\mathrm{rms} $
=
$ I_\mathrm{rms} $
=

IMPEDANCE_OF_VACUUM ¤

IMPEDANCE_OF_VACUUM = IMPEDANCE['vacuum']

Physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space.

Wikidata: Q269492
Symbol: $Z_0$
Assumptions: in vacuum$$Z_0 = \frac{|\boldsymbol{E}|}{|\boldsymbol{H}|}$$
$ Z_0 $
=
$ \boldsymbol{E} $
=
$ \boldsymbol{H} $
=

AC_RESISTANCE ¤

AC_RESISTANCE = QtyKind(OHM, ('alternating_current',))

Real part of the complex impedance.

Wikidata: Q1048490
Symbol: $R$
$$R = \Re(\underline{Z})$$
$ R $
=
$ \underline{Z} $
=

REACTANCE ¤

REACTANCE = QtyKind(OHM, ('reactance',))

A circuit element's opposition to changes in electric current due to its inductance or capacitance.

Wikidata: Q193972
Symbol: $X$
$$X = \Im(\underline{Z})$$
$ X $
=
$ \underline{Z} $
=

ADMITTANCE ¤

ADMITTANCE = QtyKind(SIEMENS, ('admittance', COMPLEX))
Wikidata: Q214518
Symbol: $\underline{Y}$
$$\underline{Y} = \frac{1}{\underline{Z}}$$
$ \underline{Y} $
=
$ \underline{Z} $
=

ADMITTANCE_APPARENT ¤

ADMITTANCE_APPARENT = QtyKind(
    SIEMENS, ("admittance", "apparent")
)
Wikidata: Q119396649
Symbol: $Y$
$$Y = \frac{I_\mathrm{rms}}{V_\mathrm{rms}}$$
$ I_\mathrm{rms} $
=
$ V_\mathrm{rms} $
=

ADMITTANCE_OF_VACUUM ¤

ADMITTANCE_OF_VACUUM = QtyKind(
    SIEMENS, ("admittance", "vacuum")
)
Wikidata: Q119348262
Symbol: $Y_0$
$$Y_0 = \frac{1}{Z_0}$$

AC_CONDUCTANCE ¤

AC_CONDUCTANCE = QtyKind(
    SIEMENS, ("conductance", "alternating_current")
)

Real part of the complex admittance.

Wikidata: Q79464628
Symbol: $G$
$$G = \Re(\underline{Y})$$
$ \underline{Y} $
=

SUSCEPTANCE ¤

SUSCEPTANCE = QtyKind(SIEMENS, ('susceptance',))

Imaginary part of the admittance.

Wikidata: Q509598
Symbol: $B$
$$B = \Im(\underline{Y})$$
$ B $
=
$ \underline{Y} $
=

QUALITY_FACTOR ¤

QUALITY_FACTOR = Dimensionless('quality_factor')

Dimensionless quantity in electromagnetism.

Wikidata: Q79467569
Symbols: $Q$, $Q$, $Q$
Assumptions: non-radiating systems$$Q = \frac{|X|}{R}$$
$ Q $
=
Quality factor (dimensionless)
$ X $
=
$ R $
=
Assumptions: linear non-radiating two-terminal system or circuit under sinusoidal conditions$$Q = \frac{|\Im(\underline{S})|}{\Re(\underline{S})}$$
$ Q $
=
Quality factor (dimensionless)
$ \Im(\underline{S}) $
=
$ \Re(\underline{S}) $
=
Assumptions: resonant system$$Q = 2\pi\frac{E_\mathrm{stored}}{E_\mathrm{dissipated per cycle}}$$
$ Q $
=
Quality factor (dimensionless)
$ E $
=

DISSIPATION_FACTOR ¤

DISSIPATION_FACTOR = Dimensionless('loss_factor')
Wikidata: Q79468728
Symbols: $\mathrm{DF}$, $d$
$$\mathrm{DF} = \frac{1}{Q}$$
$ \mathrm{DF} $
=
Dissipation factor (dimensionless)
$ Q $
=
Quality factor (dimensionless)

LOSS_ANGLE ¤

LOSS_ANGLE = QtyKind(RAD, ('loss_angle',))
Wikidata: Q20820438
Symbol: $\delta$
$$\delta = \arctan \mathrm{DF}$$
$ \delta $
=
Loss angle (dimensionless)
$ \mathrm{DF} $
=
Dissipation factor (dimensionless)

ACTIVE_POWER ¤

ACTIVE_POWER = POWER['active']
Wikidata: Q12713281
Symbols: $P$, $P$
Assumptions: periodic$$P = \frac{1}{T}\int_0^T p(t) dt$$
$ P $
=
$ p(t) $
=
$ T $
=
$ dt $
=
$$P = \Re(\underline{S})$$
$ P $
=
$ \underline{S} $
=

APPARENT_POWER ¤

APPARENT_POWER = QtyKind(VA)

Product of RMS voltage and RMS current in an AC electrical system.

Wikidata: Q1930258
Symbols: $S$, $|\underline{S}|$
$$S = U_\mathrm{rms} I_\mathrm{rms}$$
$ U_\mathrm{rms} $
=
$ I_\mathrm{rms} $
=

POWER_FACTOR ¤

POWER_FACTOR = Dimensionless('power_factor')
Wikidata: Q750454
Symbols: $\mathrm{pf}$, $\lambda$
$$\mathrm{pf} = \frac{P}{S}$$
$ \mathrm{pf} $
=
Power factor (dimensionless)
$ P $
=

COMPLEX_POWER ¤

COMPLEX_POWER = QtyKind(VA, (COMPLEX,))

Quantity in electromagnetism.

Wikidata: Q65239736
Symbol: $\underline{S}$
$$\underline{S} = \underline{U} \underline{I}^*$$
$ \underline{S} $
=
$ \underline{U} $
=
$ \underline{I} $
=
$ * $
=
Complex conjugate

REACTIVE_POWER ¤

REACTIVE_POWER = QtyKind(VAR)

Type of electrical power.

Wikidata: Q2144613
Symbol: $Q$
$$Q = \Im(\underline{S})$$
$ Q $
=
$ \underline{S} $
=

NONACTIVE_POWER ¤

NONACTIVE_POWER = QtyKind(VA, ('nonactive',))

Quantity in electromagnetism.

Wikidata: Q79813060
Symbols: $Q_~$, $Q'$
Assumptions: sinusoidal$$Q_~ = \sqrt{S^2 - P^2}$$

ACTIVE_ENERGY ¤

ACTIVE_ENERGY = ENERGY['active']
Wikidata: Q79813678
Symbol: $W$
$$W = \int_{t_1}^{t_2} p(t) dt$$
$ W $
=
$ t_1 $
=
$ t_2 $
=
$ p(t) $
=
$ t $
=

REFRACTIVE_INDEX ¤

REFRACTIVE_INDEX = Dimensionless('refractive_index')
Wikidata: Q174102
Symbol: $n$
$$n = \frac{c_0}{c}$$
$ n $
=
Refractive index (dimensionless)
$ c $
=

RADIANT_ENERGY ¤

RADIANT_ENERGY = QtyKind(J, ('radiant',))

Energy propagated by electromagnetic waves.

Wikidata: Q10932713
Symbols: $Q_e$, $W$, $U$, $Q$
$$Q_e = \int_{t_1}^{t_2} \Phi_e dt$$
$ Q_e $
=
$ \Phi_e $
=
$ t $
=
$ t_1 $
=
$ t_2 $
=

SPECTRAL_RADIANT_ENERGY ¤

SPECTRAL_RADIANT_ENERGY = QtyKind(
    J * M**-1, ("radiant", "spectral")
)
Wikidata: Q80237041
Symbols: $Q_{e,\lambda}$, $W_\lambda$, $U_\lambda$, $Q_\lambda$
$$Q_{e,\lambda} = \frac{dQ_e}{d\lambda}$$
$ Q_{e,\lambda} $
=
$ Q_e $
=
$ \lambda $
=

RADIANT_ENERGY_DENSITY ¤

RADIANT_ENERGY_DENSITY = ENERGY_DENSITY['radiant']
Wikidata: Q15054312
Symbols: $w_e$, $w_e$, $\rho_e$, $w$
$$w_e = \frac{dQ_e}{dV}$$
$ w_e $
=
$ Q_e $
=
$ V $
=
Assumptions: planckian radiator$$w_e = \frac{4\sigma}{c_0} T^4$$
$ w_e $
=
$ \sigma $
=
$ T $
=

SPECTRAL_RADIANT_ENERGY_DENSITY_WAVELENGTH ¤

SPECTRAL_RADIANT_ENERGY_DENSITY_WAVELENGTH = QtyKind(
    J * M**-4, ("radiant", "spectral", "wavelength")
)
Wikidata: Q80372486
Symbols: $w_{e,\lambda}$, $w_{e,\lambda}$, $w_\lambda$
$$w_{e,\lambda} = \frac{dQ_{e,\lambda}}{dV}$$
$ w_{e,\lambda} $
=
$ Q_{e,\lambda} $
=
$ V $
=
$ \lambda $
=
Assumptions: planckian radiator$$w_{e,\lambda} = 8\pi h c_0 \frac{\lambda^{-5}}{\exp(c_2\lambda^{-1}T^{-1})-1}$$
$ w_{e,\lambda} $
=
$ h $
=
$ T $
=
$ \lambda $
=

SPECTRAL_RADIANT_ENERGY_DENSITY_WAVENUMBER ¤

SPECTRAL_RADIANT_ENERGY_DENSITY_WAVENUMBER = QtyKind(
    J * M**-2, ("radiant", "spectral", "wavenumber")
)
Wikidata: Q80373928
Symbols: $w_{e,\tilde{\nu}}$, $\rho_{e,\tilde{\nu}}$, $w_{\tilde{\nu}}$
$$w_{e,\tilde{\nu}} = \frac{dQ_{e,\tilde{\nu}}}{dV}$$
$ w_{e,\tilde{\nu}} $
=
$ Q_{e,\tilde{\nu}} $
=
$ V $
=
$ \tilde{\nu} $
=

RADIANT_FLUX ¤

RADIANT_FLUX = QtyKind(W, ('radiant_flux',))

Power carried by electromagnetic waves.

Wikidata: Q1253356
Symbols: $\Phi_e$, $P_e$
$$\Phi_e = \frac{dQ_e}{dt}$$
$ \Phi_e $
=
$ Q_e $
=
$ t $
=
$$\Phi_e = \iint_\Omega I_e(\vartheta, \varphi) \sin\vartheta d\varphi d\vartheta$$
$ \Phi_e $
=
$ I_e $
=
$ \vartheta $
=
Polar angle
$ \varphi $
=
Azimuthal angle
$ \Omega $
=
Solid angle (dimensionless)

ABSORBED_RADIANT_FLUX ¤

ABSORBED_RADIANT_FLUX = RADIANT_FLUX['absorbed']

INCIDENT_RADIANT_FLUX ¤

INCIDENT_RADIANT_FLUX = RADIANT_FLUX['incident']

REFLECTED_RADIANT_FLUX ¤

REFLECTED_RADIANT_FLUX = RADIANT_FLUX['reflected']

TRANSMITTED_RADIANT_FLUX ¤

TRANSMITTED_RADIANT_FLUX = RADIANT_FLUX['transmitted']

SPECTRAL_RADIANT_FLUX ¤

SPECTRAL_RADIANT_FLUX = QtyKind(
    W * M**-1, ("radiant_flux", "spectral")
)
Wikidata: Q81062859
Symbols: $\Phi_{e,\lambda}$, $P_{e,\lambda}$
$$\Phi_{e,\lambda} = \frac{d\Phi_e}{d\lambda}$$
$ \Phi_{e,\lambda} $
=
$ \Phi_e $
=
$ \lambda $
=

RADIANT_INTENSITY ¤

RADIANT_INTENSITY = QtyKind(W * SR ** -1)
Wikidata: Q1253365
Symbol: $I_e$
Assumptions: point source$$I_e = \frac{d\Phi_e}{d\Omega}$$
$ I_e $
=
$ \Phi_e $
=
$ \Omega $
=
Solid angle (dimensionless)

SPECTRAL_RADIANT_INTENSITY ¤

SPECTRAL_RADIANT_INTENSITY = QtyKind(W * SR**-1 * M**-1)
Wikidata: Q81072410
Symbol: $I_{e,\lambda}$
$$I_{e,\lambda} = \frac{dI_e}{d\lambda}$$
$ I_{e,\lambda} $
=
$ I_e $
=
$ \lambda $
=

RADIANCE ¤

RADIANCE = QtyKind(W * SR ** -1 * M ** -2)

Areal density of radiant intensity in a given direction.

Wikidata: Q1411145
Symbols: $L_e$, $L_e$
$$L_e = \frac{dI_e}{dA} \frac{1}{\cos\theta}$$
$ L_e $
=
Radiance (watt · steradian⁻¹ · meter⁻²)
$ I_e $
=
$ A $
=
Area (meter²)
$ \theta $
=
Angle between the surface normal and the specified direction (dimensionless)
Assumptions: planckian radiator$$L_e = \frac{\sigma}{\pi} T^4$$
$ L_e $
=
Radiance (watt · steradian⁻¹ · meter⁻²)
$ \sigma $
=
$ T $
=

SPECTRAL_RADIANCE ¤

SPECTRAL_RADIANCE = QtyKind(W * SR ** -1 * M ** -3)

Radiance of a surface.

Wikidata: Q27649052
Symbols: $L_{e,\lambda}$, $L_{e,\lambda}$
$$L_{e,\lambda} = \frac{dL_e}{d\lambda}$$
$ L_{e,\lambda} $
=
$ L_e $
=
Radiance (watt · steradian⁻¹ · meter⁻²)
$ \lambda $
=
Assumptions: planckian radiator$$L_{e,\lambda}(\lambda) = \frac{c(\lambda)}{4\pi} \omega_\lambda(\lambda)=h c_0^2 \frac{\lambda^{-5}}{\exp(c_2 \lambda^{-1} T^{-1}) - 1}$$
$ L_{e,\lambda} $
=
$ \lambda $
=
$ c(\lambda) $
=
$ h $
=
$ T $
=
$ \omega_\lambda $
=

IRRADIANCE ¤

IRRADIANCE = QtyKind(W * M ** -2, ('irradiance',))
Wikidata: Q830654
Symbol: $E_e$
$$E_e = \frac{d\Phi_e}{dA}$$
$ E_e $
=
Irradiance (watt · meter⁻²)
$ \Phi_e $
=
$ A $
=
Area (meter²)

SPECTRAL_IRRADIANCE ¤

SPECTRAL_IRRADIANCE = QtyKind(W * M**-3, ("irradiance",))
Wikidata: Q81382741
Symbol: $E_{e,\lambda}$
$$E_{e,\lambda} = \frac{dE_e}{d\lambda}$$
$ E_{e,\lambda} $
=
$ E_e $
=
Irradiance (watt · meter⁻²)
$ \lambda $
=

RADIANT_EXITANCE ¤

RADIANT_EXITANCE = QtyKind(W * M ** -2, ('exitance',))
Wikidata: Q15054698
Symbols: $M_e$, $M_e$
$$M_e = \frac{d\Phi_e}{dA}$$
$ M_e $
=
$ \Phi_e $
=
$ A $
=
Area (meter²)
Assumptions: planckian radiator$$M_e = \sigma T^4$$
$ M_e $
=
$ \sigma $
=
$ T $
=

SPECTRAL_RADIANT_EXITANCE ¤

SPECTRAL_RADIANT_EXITANCE = QtyKind(
    W * M**-3, ("exitance",)
)
Wikidata: Q81664734
Symbol: $M_{e,\lambda}$
$$M_{e,\lambda} = \frac{dM_e}{d\lambda}$$
$ M_{e,\lambda} $
=
$ M_e $
=
$ \lambda $
=

RADIANT_EXPOSURE ¤

RADIANT_EXPOSURE = QtyKind(
    J * M**-2, ("radiant_exposure",)
)
Wikidata: Q1418023
Symbol: $H_e$
$$H_e = \frac{dQ_e}{dA}$$
$ H_e $
=
$ Q_e $
=
$ A $
=
Area (meter²)

SPECTRAL_RADIANT_EXPOSURE ¤

SPECTRAL_RADIANT_EXPOSURE = QtyKind(
    J * M**-3, ("radiant_exposure", "spectral")
)
Wikidata: Q82969329
Symbol: $H_{e,\lambda}$
$$H_{e,\lambda} = \frac{dH_e}{d\lambda}$$
$ H_{e,\lambda} $
=
$ H_e $
=
$ \lambda $
=

LUMINOUS_EFFICIENCY ¤

LUMINOUS_EFFICIENCY = Dimensionless('luminous_efficiency')

Specify the photometric condition with tags.

Wikidata: Q83293942
Symbol: $V$
Assumptions: photopic vision$$V = \frac{K}{K_m}$$
$ V $
=
Luminous efficiency (dimensionless)
$ K_m $
=

SPECTRAL_LUMINOUS_EFFICIENCY ¤

SPECTRAL_LUMINOUS_EFFICIENCY = Dimensionless(
    "spectral_luminous_efficiency"
)

Spectral sensitivity of human visual perception of brightness.

Wikidata: Q899219

LUMINOUS_EFFICACY_OF_RADIATION ¤

LUMINOUS_EFFICACY_OF_RADIATION = QtyKind(
    LM * W**-1, ("radiation",)
)
Wikidata: Q1504173
Symbol: $K$
$$K = \frac{\Phi_\nu}{\Phi_e}$$
$ \Phi_\nu $
=
$ \Phi_e $
=

SPECTRAL_LUMINOUS_EFFICACY ¤

SPECTRAL_LUMINOUS_EFFICACY = QtyKind(
    LM * W**-1, ("spectral",)
)

Specify the photometric condition with tags.

Wikidata: Q83387222
Symbol: $K$
$$K(\lambda) = K_m V(\lambda)$$
$ K_m $
=
$ V $
=
$ \lambda $
=

MAXIMUM_LUMINOUS_EFFICACY ¤

MAXIMUM_LUMINOUS_EFFICACY = QtyKind(
    LM * W**-1, ("maximum",)
)
Wikidata: Q83387484
Symbol: $K_m$

LUMINOUS_EFFICACY_OF_SOURCE ¤

LUMINOUS_EFFICACY_OF_SOURCE = QtyKind(
    LM * W**-1, ("source",)
)

See: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=845-21-089

Wikidata: Q3425218
Symbol: $\eta_\nu$
$$\eta_\nu = \frac{\Phi_\nu}{P}$$
$ \eta_\nu $
=
$ \Phi_\nu $
=
$ P $
=

LUMINOUS_ENERGY ¤

LUMINOUS_ENERGY = QtyKind(LM * S)
Wikidata: Q900164
Symbol: $Q_\nu$
$$Q_\nu = \int_{t_1}^{t_2} \Phi_\nu(t) dt$$
$ Q_\nu $
=
$ \Phi_\nu $
=
$ t $
=
$ t_1 $
=
$ t_2 $
=

LUMINOUS_FLUX ¤

LUMINOUS_FLUX = QtyKind(LM)
Wikidata: Q107780
Symbol: $\Phi_\nu$
$$\Phi_\nu = \frac{dQ_\nu}{dt} = K_m \int_0^\infty \Phi_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ \Phi_\nu $
=
$ Q_\nu $
=
$ t $
=
$ K_m $
=
$ \Phi_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

ABSORBED_LUMINOUS_FLUX ¤

ABSORBED_LUMINOUS_FLUX = LUMINOUS_FLUX['absorbed']

INCIDENT_LUMINOUS_FLUX ¤

INCIDENT_LUMINOUS_FLUX = LUMINOUS_FLUX['incident']

REFLECTED_LUMINOUS_FLUX ¤

REFLECTED_LUMINOUS_FLUX = LUMINOUS_FLUX['reflected']

TRANSMITTED_LUMINOUS_FLUX ¤

TRANSMITTED_LUMINOUS_FLUX = LUMINOUS_FLUX['transmitted']

LUMINOUS_INTENSITY ¤

LUMINOUS_INTENSITY = QtyKind(CD)
Wikidata: Q104831
Symbol: $I_\nu$
$$I_\nu = \frac{d\Phi_\nu}{d\Omega} = K_m \int_0^\infty I_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ I_\nu $
=
$ \Phi_\nu $
=
$ \Omega $
=
Solid angle (dimensionless)
$ K_m $
=
$ I_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

LUMINANCE ¤

LUMINANCE = QtyKind(CD * M ** -2)

Photometric measure of the luminous intensity per area of light travelling in a given direction.

Wikidata: Q355386
Symbol: $L_\nu$
$$L_\nu = \frac{dI_\nu}{dA}\frac{1}{\cos\theta} = K_m \int_0^\infty L_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ L_\nu $
=
$ I_\nu $
=
$ A $
=
Area (meter²)
$ \theta $
=
Angle between the surface normal at the point and the specified direction (dimensionless)
$ K_m $
=
$ L_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

ILLUMINANCE ¤

ILLUMINANCE = QtyKind(LX)
Wikidata: Q194411
Symbol: $E_\nu$
$$E_\nu = \frac{d\Phi_\nu}{dA} = K_m \int_0^\infty E_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ E_\nu $
=
$ \Phi_\nu $
=
$ A $
=
Area (meter²)
$ K_m $
=
$ E_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

LUMINOUS_EXITANCE ¤

LUMINOUS_EXITANCE = QtyKind(LM * M ** -2)
Wikidata: Q11721922
Symbol: $M_\nu$
$$M_\nu = \frac{d\Phi_\nu}{dA} = K_m \int_0^\infty M_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ M_\nu $
=
$ \Phi_\nu $
=
$ A $
=
Area (meter²)
$ K_m $
=
$ M_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

LUMINOUS_EXPOSURE ¤

LUMINOUS_EXPOSURE = QtyKind(LX * S)
Wikidata: Q815588
Symbol: $H_\nu$
$$H_\nu = \frac{dQ_\nu}{dA} = K_m \int_0^\infty H_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
$ H_\nu $
=
$ Q_\nu $
=
$ A $
=
Area (meter²)
$ K_m $
=
$ H_{e,\lambda} $
=
$ V(\lambda) $
=
$ \lambda $
=

NUMBER_OF_PHOTONS ¤

NUMBER_OF_PHOTONS = Dimensionless('photon_number')
Wikidata: Q83698917
Symbol: $N_p$
$$N_p = \frac{Q_e}{hf} = \int_{t_1}^{t_2} \Phi_p dt$$
$ N_p $
=
Number of photons (dimensionless)
$ Q_e $
=
$ h $
=
$ f $
=
$ \Phi_p $
=
$ t $
=
$ t_1 $
=
$ t_2 $
=

PHOTON_ENERGY ¤

PHOTON_ENERGY = QtyKind(J, ('photon',))

Energy carried by a single photon.

Wikidata: Q25303639
Symbols: $E_p$, $Q$
$$E_p = hf$$
$ E_p $
=
$ h $
=
$ f $
=

PHOTON_FLUX ¤

PHOTON_FLUX = QtyKind(S ** -1, ('photon_flux',))
Wikidata: Q83699542
Symbol: $\Phi_p$
$$\Phi_p = \frac{dN_p}{dt}$$
$ \Phi_p $
=
$ N_p $
=
Number of photons (dimensionless)
$ t $
=

PHOTON_INTENSITY ¤

PHOTON_INTENSITY = QtyKind(S ** -1 * SR ** -1)
Wikidata: Q83853335
Symbol: $I_p$
$$I_p = \frac{d\Phi_p}{d\Omega}$$
$ I_p $
=
$ \Phi_p $
=
$ \Omega $
=
Solid angle (dimensionless)

PHOTON_RADIANCE ¤

PHOTON_RADIANCE = QtyKind(M ** -2 * S ** -1 * SR ** -1)

Area density of the photon intensity in a specified direction.

Wikidata: Q10498337
Symbol: $L_p$
$$L_p = \frac{dI_p}{dA} \frac{1}{\cos\theta}$$
$ L_p $
=
Photon radiance (meter⁻² · second⁻¹ · steradian⁻¹)
$ I_p $
=
$ A $
=
Area (meter²)
$ \cos\theta $
=
Angle between the surface normal at the point and the specified direction

PHOTON_IRRADIANCE ¤

PHOTON_IRRADIANCE = QtyKind(
    M**-2 * S**-1, ("photon_irradiance",)
)
Wikidata: Q83950903
Symbol: $E_p$
$$E_p = \frac{d\Phi_p}{dA}$$
$ E_p $
=
$ \Phi_p $
=
$ A $
=
Area over which the flux is incident (meter²)

PHOTON_EXITANCE ¤

PHOTON_EXITANCE = QtyKind(
    M**-2 * S**-1, ("photon_exitance",)
)
Wikidata: Q84025202
Symbol: $M_p$
$$M_p = \frac{d\Phi_p}{dA}$$
$ M_p $
=
Photon exitance (meter⁻² · second⁻¹)
$ \Phi_p $
=
$ A $
=
Area from which the flux is emitted (meter²)

PHOTON_EXPOSURE ¤

PHOTON_EXPOSURE = QtyKind(M ** -2, ('photon_exposure',))
Wikidata: Q84026278
Symbol: $H_p$
$$H_p = \frac{dN_p}{dA}$$
$ H_p $
=
$ N_p $
=
Number of photons (dimensionless)
$ A $
=
Area (meter²)

CIE_COLOUR_MATCHING_FUNCTIONS_1931 ¤

CIE_COLOUR_MATCHING_FUNCTIONS_1931 = Dimensionless(
    "cie_colour_matching_functions_1931"
)
Wikidata: Q84413021
Symbol: $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$

CIE_COLOUR_MATCHING_FUNCTIONS_1964 ¤

CIE_COLOUR_MATCHING_FUNCTIONS_1964 = Dimensionless(
    "cie_colour_matching_functions_1964"
)
Wikidata: Q84413310
Symbol: $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$

CHROMATICITY_COORDINATES_1931 ¤

CHROMATICITY_COORDINATES_1931 = Dimensionless(
    "chromaticity_coordinates_1931"
)

See: https://en.wikipedia.org/wiki/CIE_1931_color_space

Wikidata: Q84413341
Symbol: $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{X}{X + Y + Z} \\ \frac{Y}{X + Y + Z} \\ \frac{Z}{X + Y + Z} \end{bmatrix}$$
$ \begin{bmatrix} x \\ y \\ z \end{bmatrix} $
=
$ X $
=
CIE 1931 tristimulus value X
$ Y $
=
CIE 1931 tristimulus value Y
$ Z $
=
CIE 1931 tristimulus value Z

CHROMATICITY_COORDINATES_1964 ¤

CHROMATICITY_COORDINATES_1964 = Dimensionless(
    "chromaticity_coordinates_1964"
)
Wikidata: Q84413536
Symbol: $\begin{bmatrix} x_{10} \\ y_{10} \\ z_{10} \end{bmatrix}$
$$\begin{bmatrix} x_{10} \\ y_{10} \\ z_{10} \end{bmatrix} = \begin{bmatrix} \frac{X_{10}}{X_{10} + Y_{10} + Z_{10}} \\ \frac{Y_{10}}{X_{10} + Y_{10} + Z_{10}} \\ \frac{Z_{10}}{X_{10} + Y_{10} + Z_{10}} \end{bmatrix}$$
$ \begin{bmatrix} x_{10} \\ y_{10} \\ z_{10} \end{bmatrix} $
=
$ X_{10} $
=
CIE 1964 tristimulus value X
$ Y_{10} $
=
CIE 1964 tristimulus value Y
$ Z_{10} $
=
CIE 1964 tristimulus value Z

COLOUR_TEMPERATURE ¤

COLOUR_TEMPERATURE = TEMPERATURE['colour']

Property of light sources related to black-body radiation.

Wikidata: Q327408
Symbol: $T_c$

CORRELATED_COLOUR_TEMPERATURE ¤

CORRELATED_COLOUR_TEMPERATURE = TEMPERATURE[
    "correlated_colour"
]

Property of light stimulus related to human perception.

Wikidata: Q25452284
Symbol: $T_{cp}$

EMISSIVITY ¤

EMISSIVITY = Dimensionless('emissivity')

Effectiveness of an object in emitting thermal radiation.

Wikidata: Q899670
Symbols: $\varepsilon$, $\varepsilon_T$
$$\varepsilon = \frac{M_e}{(M_{e})_{bb}}$$
$ \varepsilon $
=
Emissivity (dimensionless)
$ M_e $
=
$ bb $
=
Planckian radiator at the same temperature

EMISSIVITY_AT_SPECIFIC_WAVELENGTH ¤

EMISSIVITY_AT_SPECIFIC_WAVELENGTH = Dimensionless(
    "emissivity_at_specific_wavelength"
)

Emissivity as a function of wavelength.

Wikidata: Q84710157
Symbol: $\varepsilon(\lambda)$

ABSORPTANCE ¤

ABSORPTANCE = Dimensionless('absorptance')
Wikidata: Q16635541
Symbols: $\alpha$, $a$
$$\alpha = \frac{\Phi_{e,a}}{\Phi_{e,i}}$$
$ \alpha $
=
Absorptance (dimensionless)
$ \Phi_{e,a} $
=
$ \Phi_{e,i} $
=

SPECTRAL_ABSORPTANCE ¤

SPECTRAL_ABSORPTANCE = ABSORPTANCE['spectral']

LUMINOUS_ABSORPTANCE ¤

LUMINOUS_ABSORPTANCE = ABSORPTANCE['luminous']
Wikidata: Q84827265
Symbol: $\alpha_\nu$
$$\alpha_\nu = \frac{\Phi_{\nu,a}}{\Phi_{\nu,i}}$$
$ \alpha_\nu $
=
Luminous absorptance (dimensionless)
$ \Phi_{\nu,a} $
=
$ \Phi_{\nu,i} $
=

REFLECTANCE ¤

REFLECTANCE = Dimensionless('reflectance')

Capacity of an object to reflect light.

Wikidata: Q663650
Symbol: $\rho$
$$\rho = \frac{\Phi_{e,r}}{\Phi_{e,i}}$$
$ \rho $
=
Reflectance (dimensionless)
$ \Phi_{e,r} $
=
$ \Phi_{e,i} $
=

SPECTRAL_REFLECTANCE ¤

SPECTRAL_REFLECTANCE = REFLECTANCE['spectral']

LUMINOUS_REFLECTANCE ¤

LUMINOUS_REFLECTANCE = REFLECTANCE['luminous']
Wikidata: Q84932761
Symbol: $\rho_\nu$
$$\rho_\nu = \frac{\Phi_{\nu,r}}{\Phi_{\nu,i}}$$
$ \rho_\nu $
=
Luminous reflectance (dimensionless)
$ \Phi_{\nu,r} $
=
$ \Phi_{\nu,i} $
=

TRANSMITTANCE ¤

TRANSMITTANCE = Dimensionless('transmittance')
Wikidata: Q1427863
Symbols: $\tau$, $T$
$$\tau = \frac{\Phi_{e,t}}{\Phi_{e,i}}$$
$ \tau $
=
Transmittance (dimensionless)
$ \Phi_{e,t} $
=
$ \Phi_{e,i} $
=

SPECTRAL_TRANSMITTANCE ¤

SPECTRAL_TRANSMITTANCE = TRANSMITTANCE['spectral']

LUMINOUS_TRANSMITTANCE ¤

LUMINOUS_TRANSMITTANCE = TRANSMITTANCE['luminous']
Wikidata: Q84935567
Symbol: $\tau_\nu$
$$\tau_\nu = \frac{\Phi_{\nu,t}}{\Phi_{\nu,i}}$$
$ \tau_\nu $
=
Luminous transmittance (dimensionless)
$ \Phi_{\nu,t} $
=
$ \Phi_{\nu,i} $
=

ABSORBANCE ¤

ABSORBANCE = -1 * Log(TRANSMITTANCE, base=10)

Common logarithm of the ratio of incident to transmitted radiant power through a material; the optical depth divided by ln(10).

Wikidata: Q907315
Symbols: $D$, $A_{10}$, $D_\tau$

NAPIERIAN_ABSORBANCE ¤

NAPIERIAN_ABSORBANCE = -1 * Log(TRANSMITTANCE, base=_E)
Wikidata: Q85664557
Symbols: $A_n$, $B$

RADIANCE_FACTOR ¤

RADIANCE_FACTOR = Dimensionless('radiance_factor')
Wikidata: Q85811846
Symbol: $\beta_e$
$$\beta_e = \frac{(L_e)_n}{(L_e)_d}$$
$ \beta_e $
=
Radiance factor (dimensionless)
$ L_e $
=
Radiance (watt · steradian⁻¹ · meter⁻²)
$ n $
=
Surface element in a given direction
$ d $
=
Perfect reflecting or transmitting diffuser

LUMINANCE_FACTOR ¤

LUMINANCE_FACTOR = Dimensionless('luminance_factor')
Wikidata: Q1821355
Symbol: $\beta_\nu$
$$\beta_\nu = \frac{(L_\nu)_n}{(L_\nu)_d}$$
$ \beta_\nu $
=
Luminance factor (dimensionless)
$ L_\nu $
=
$ n $
=
Surface element in a given direction
$ d $
=
Perfect reflecting or transmitting diffuser

SPECTRAL_LUMINANCE_FACTOR ¤

SPECTRAL_LUMINANCE_FACTOR = Dimensionless(
    "spectral_luminance_factor"
)

REFLECTANCE_FACTOR ¤

REFLECTANCE_FACTOR = Dimensionless('reflectance_factor')

See: https://en.wikipedia.org/wiki/Reflectance

Wikidata: Q86078369
Symbol: $R$
$$R = \frac{(\Phi_{e,r})_n}{(\Phi_{e,r})_d}$$
$ R $
=
Reflectance factor (dimensionless)
$ \Phi_{e,r} $
=
$ n $
=
A given cone
$ d $
=
Identically irradiated diffuser of reflectance 1

PROPAGATION_LENGTH ¤

PROPAGATION_LENGTH = QtyKind(M, ('propagation_length',))
Symbol: $l$

PROPAGATION_LENGTH_ABSORBING_AND_SCATTERING ¤

PROPAGATION_LENGTH_ABSORBING_AND_SCATTERING = (
    PROPAGATION_LENGTH["absorbing", "scattering"]
)

Propagation length of a collimated beam at a point in an absorbing and scattering medium.

Symbol: $l$

LINEAR_ATTENUATION_COEFFICIENT ¤

LINEAR_ATTENUATION_COEFFICIENT = QtyKind(
    M**-1, ("linear_attenuation",)
)
Wikidata: Q86204330
Symbols: $\mu$, $\mu_l$
$$\mu(\lambda) = -\frac{1}{\Phi_{e,\lambda}(\lambda)}\frac{d\Phi_{e,\lambda}(\lambda)}{dl}$$
$ \Phi_{e,\lambda}(\lambda) $
=

PROPAGATION_LENGTH_ABSORBING ¤

PROPAGATION_LENGTH_ABSORBING = PROPAGATION_LENGTH[
    "absorbing"
]

Propagation length of a collimated beam at a point in an absorbing medium.

Symbol: $l$

LINEAR_ABSORPTION_COEFFICIENT ¤

LINEAR_ABSORPTION_COEFFICIENT = QtyKind(
    M**-1, ("linear_absorption",)
)
Wikidata: Q86204782
Symbols: $\alpha$, $\alpha_l$, $a_l$, $\alpha$
$$\alpha(\lambda) = -\frac{1}{\Phi_{e,\lambda}(\lambda)}\frac{d\Phi_{e,\lambda}(\lambda)}{dl}$$
$ \alpha $
=
$ \Phi_{e,\lambda}(\lambda) $
=

MASS_ATTENUATION_COEFFICIENT ¤

MASS_ATTENUATION_COEFFICIENT = QtyKind(
    KG**-1 * M**2, ("mass_attenuation",)
)
Wikidata: Q1907558
Symbol: $\mu_m$
$$\mu_m(\lambda) = \frac{\mu(\lambda)}{\rho}$$
$ \mu_m $
=
$ \lambda $
=
$ \rho $
=

MASS_ABSORPTION_COEFFICIENT ¤

MASS_ABSORPTION_COEFFICIENT = QtyKind(
    KG**-1 * M**2, ("mass_absorption",)
)
Wikidata: Q86202147
Symbol: $\alpha_m$
$$\alpha_m(\lambda) = \frac{\alpha(\lambda)}{\rho}$$
$ \alpha_m $
=
$ \lambda $
=
$ \alpha $
=
$ \rho $
=

MOLAR_ABSORPTION_COEFFICIENT ¤

MOLAR_ABSORPTION_COEFFICIENT = QtyKind(
    M**2 * MOL**-1, ("molar_absorption",)
)
Wikidata: Q11784888
Symbol: $\chi$
$$\chi = \alpha V_m$$
$ \chi $
=
$ \alpha $
=
$ V_m $
=
Molar volume (meter³ · mole⁻¹)

OCTAVE ¤

OCTAVE = Log(_RATIO, base=2).alias('octave')

DECADE ¤

DECADE = Log(_RATIO, base=10).alias('decade')

SPEED_OF_SOUND ¤

SPEED_OF_SOUND = SPEED['sound']

SOUND_PRESSURE ¤

SOUND_PRESSURE = QtyKind(PA, ('sound',))

Local pressure deviation from the ambient atmospheric pressure, caused by a sound wave.

Wikidata: Q1068172
Symbol: $p$
$$p = p_\text{total} - p_\text{static}$$
$ p_\text{total} $
=
$ p_\text{static} $
=

SOUND_PRESSURE_RMS ¤

SOUND_PRESSURE_RMS = SOUND_PRESSURE['rms']

SOUND_PARTICLE_DISPLACEMENT ¤

SOUND_PARTICLE_DISPLACEMENT = QtyKind(
    M, ("sound_particle", VECTOR)
)

Instantaneous displacement of a particle from its equilibrium position in a medium as it transmits a sound wave.

Wikidata: Q779457
Symbol: $\boldsymbol{\delta}$

SOUND_PARTICLE_VELOCITY ¤

SOUND_PARTICLE_VELOCITY = QtyKind(
    M_PERS, ("sound_particle", VECTOR)
)
Wikidata: Q336894
Symbols: $\boldsymbol{u}$, $v$
Assumptions: magnitude small relative to phase speed$$\boldsymbol{u} = \frac{\partial\boldsymbol{\delta}}{\partial t}$$
$ \boldsymbol{u} $
=
$ \boldsymbol{\delta} $
=
$ t $
=

SOUND_PARTICLE_ACCELERATION ¤

SOUND_PARTICLE_ACCELERATION = QtyKind(
    M_PERS2, ("sound_particle", VECTOR)
)
Wikidata: Q7140491
Symbol: $\boldsymbol{a}$
Assumptions: magnitude small relative to phase speed$$\boldsymbol{a} = \frac{\partial\boldsymbol{u}}{\partial t}$$
$ \boldsymbol{a} $
=
$ \boldsymbol{u} $
=
$ t $
=

SOUND_VOLUME_FLOW_RATE ¤

SOUND_VOLUME_FLOW_RATE = VOLUME_FLOW_RATE['sound']
Wikidata: Q1640308
Symbols: $q$, $q_V$
$$q = \iint_S \boldsymbol{u} \cdot \boldsymbol{e}_n dA$$
$ q $
=
$ \boldsymbol{u} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

SOUND_ENERGY_DENSITY ¤

SOUND_ENERGY_DENSITY = ENERGY_DENSITY['sound']
Wikidata: Q2230505
Symbol: $w$
Assumptions: low mean fluid flow$$w = \frac{1}{2}\rho_m u^2 + \frac{p^2}{2\rho_m c^2}$$
$ w $
=
$ \rho_m $
=
$ c $
=

SOUND_ENERGY ¤

SOUND_ENERGY = ENERGY['sound']
Wikidata: Q351281
Symbol: $Q$
$$Q = \int_V w dV$$
$ Q $
=
$ w $
=
$ dV $
=

SOUND_POWER ¤

SOUND_POWER = POWER['sound']
Wikidata: Q1588477
Symbols: $P$, $W$
Assumptions: homogeneous gas or fluid, low mean fluid flow$$P = \iint_S p \boldsymbol{u} \cdot \boldsymbol{e}_n dA$$
$ P $
=
$ \boldsymbol{u} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the surface
$ dA $
=

SOUND_POWER_TIME_AVERAGED ¤

SOUND_POWER_TIME_AVERAGED = SOUND_POWER['time_averaged']

SOUND_INTENSITY ¤

SOUND_INTENSITY = QtyKind(W * M ** -2, ('sound', VECTOR))
Wikidata: Q1140289
Symbol: $\boldsymbol{I}$
Assumptions: low mean fluid flow$$\boldsymbol{I} = p \boldsymbol{u}$$
$ \boldsymbol{I} $
=
$ \boldsymbol{u} $
=

SOUND_EXPOSURE ¤

SOUND_EXPOSURE = QtyKind(PA ** 2 * S, ('sound',))
Wikidata: Q2230528
Symbol: $E$
$$E = \int_{t_1}^{t_2} (p(t))^2 dt$$
$ E $
=
$ p(t) $
=
$ t $
=
$ t_1 $
=
$ t_2 $
=

CHARACTERISTIC_IMPEDANCE_LONGITUDINAL ¤

CHARACTERISTIC_IMPEDANCE_LONGITUDINAL = QtyKind(
    PA * S * M**-1, ("characteristic",)
)
Wikidata: Q87051330
Symbol: $Z_c$
Assumptions: non-dissipative homogeneous gas or fluid, progressive plane wave$$Z_c = \frac{p}{\boldsymbol{u} \cdot \boldsymbol{e}_n}$$
$ \boldsymbol{u} $
=
$ \boldsymbol{e}_n $
=
Unit normal vector to the direction of wave propagation

ACOUSTIC_IMPEDANCE ¤

ACOUSTIC_IMPEDANCE = QtyKind(
    PA * S * M**-3, ("acoustic", COMPLEX)
)
Wikidata: Q975684
Symbol: $Z_a$
Assumptions: real if zero phase difference$$Z_a = \frac{p_\mathrm{avg}}{q}$$
$ Z_a $
=
$ q $
=

PA_SOUND_RMS ¤

PA_SOUND_RMS = SOUND_PRESSURE_RMS(PA)

DB_SPL_AIR ¤

DB_SPL_AIR = (
    20
    * Log(
        ratio(PA_SOUND_RMS, Quantity(20, MICRO * PA)),
        base=10,
    )
).alias("dB_spl_air")

Sound pressure level in air and other gases.

DB_SPL_WATER ¤

DB_SPL_WATER = (
    20
    * Log(
        ratio(PA_SOUND_RMS, Quantity(1, MICRO * PA)),
        base=10,
    )
).alias("dB_spl_water")

Sound pressure level in water and other liquids.

DB_PWL ¤

DB_PWL = (
    10
    * Log(
        ratio(
            SOUND_POWER_TIME_AVERAGED(W),
            Quantity(1, PICO * W),
        ),
        base=10,
    )
).alias("dB_pwl")

Sound power level.

PA2_PERS_SOUND ¤

PA2_PERS_SOUND = SOUND_EXPOSURE(PA ** 2 * S)

DB_SEL_AIR ¤

DB_SEL_AIR = (
    10
    * Log(
        ratio(
            PA2_PERS_SOUND,
            Quantity(400, (MICRO * PA) ** 2 * S),
        ),
        base=10,
    )
).alias("dB_sel_air")

Sound exposure level in air and other gases.

DB_SEL_WATER ¤

DB_SEL_WATER = (
    10
    * Log(
        ratio(
            PA2_PERS_SOUND,
            Quantity(1, (MICRO * PA) ** 2 * S),
        ),
        base=10,
    )
).alias("dB_sel_water")

Sound exposure level in water and other liquids.

REVERBERATION_TIME ¤

REVERBERATION_TIME = DURATION['reverberation']

Time after which the sound energy density has fallen to a certain fraction of the initial value after the sound source has stopped emitting.

Wikidata: Q606646
Symbol: $T$

NUMBER_OF_ENTITIES ¤

NUMBER_OF_ENTITIES = Dimensionless('number_of_entities')

Discrete quantity; number of entities of a given kind in a system.

Wikidata: Q614112
Symbol: $N$

AMOUNT_OF_SUBSTANCE ¤

AMOUNT_OF_SUBSTANCE = QtyKind(MOL, ("amount_of_substance",))

Extensive physical property.

Wikidata: Q104946
Symbol: $n$
$$n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_A}$$
$ \mathrm{X} $
=
Substance
$ N $
=
Number of entities (dimensionless)
$ N_A $
=

INITIAL_AMOUNT_OF_SUBSTANCE ¤

INITIAL_AMOUNT_OF_SUBSTANCE = AMOUNT_OF_SUBSTANCE["initial"]

FINAL_AMOUNT_OF_SUBSTANCE ¤

FINAL_AMOUNT_OF_SUBSTANCE = AMOUNT_OF_SUBSTANCE['final']

EQUILIBRIUM_AMOUNT_OF_SUBSTANCE ¤

EQUILIBRIUM_AMOUNT_OF_SUBSTANCE = AMOUNT_OF_SUBSTANCE[
    "equilibrium"
]

RELATIVE_ATOMIC_MASS ¤

RELATIVE_ATOMIC_MASS = Dimensionless("relative_atomic_mass")
Wikidata: Q41377
Symbol: $A_r$
$$A_r(\mathrm{X}) = \frac{m_\mathrm{average}(\mathrm{X})}{m_u}$$
$ A_r $
=
Relative atomic mass (dimensionless)
$ \mathrm{X} $
=
Atom or molecule
$ m $
=
$ u $
=
Unified atomic mass

RELATIVE_MOLECULAR_MASS ¤

RELATIVE_MOLECULAR_MASS = Dimensionless(
    "relative_molecular_mass"
)

The particular molecule should be specified with tags.

MOLAR_MASS ¤

MOLAR_MASS = QtyKind(KG * MOL ** -1)
Wikidata: Q145623
Symbol: $M$
$$M(\mathrm{X}) = \frac{m(\mathrm{X})}{n(\mathrm{X})}$$
$ M $
=
$ \mathrm{X} $
=
Pure substance
$ m $
=

MOLAR_VOLUME ¤

MOLAR_VOLUME = QtyKind(M**3 * MOL**-1, ("molar_volume",))
Wikidata: Q487112
Symbol: $V_m$
$$V_m = \frac{V}{n(\mathrm{X})}$$
$ V_m $
=
Molar volume (meter³ · mole⁻¹)
$ V $
=
$ \mathrm{X} $
=
Pure substance

MOLAR_ENERGY ¤

MOLAR_ENERGY = QtyKind(J * MOL ** -1, ('molar_energy',))
Wikidata: Q45721316

MOLAR_INTERNAL_ENERGY ¤

MOLAR_INTERNAL_ENERGY = MOLAR_ENERGY['internal']
Wikidata: Q88523106
Symbol: $U_m$
$$U_m = \frac{U}{n(\mathrm{X})}$$
$ U_m $
=
$ \mathrm{X} $
=
Substance (commonly pure)

MOLAR_ENTHALPY ¤

MOLAR_ENTHALPY = MOLAR_ENERGY['enthalpy']
Wikidata: Q88769977
Symbol: $H_m$
$$H_m = \frac{H}{n(\mathrm{X})}$$
$ H_m $
=
$ H $
=
$ \mathrm{X} $
=
Substance (commonly pure)

MOLAR_HELMHOLTZ_ENERGY ¤

MOLAR_HELMHOLTZ_ENERGY = MOLAR_ENERGY['helmholtz']
Wikidata: Q88862986
Symbols: $A_m$, $F_m$
$$A_m = \frac{A}{n(\mathrm{X})}$$
$ A_m $
=
$ \mathrm{X} $
=
Substance (commonly pure)

MOLAR_GIBBS_ENERGY ¤

MOLAR_GIBBS_ENERGY = MOLAR_ENERGY['gibbs']
Wikidata: Q88863324
Symbol: $G_m$
$$G_m = \frac{G}{n(\mathrm{X})}$$
$ G_m $
=
$ G $
=
$ \mathrm{X} $
=
Substance (commonly pure)

MOLAR_HEAT_CAPACITY ¤

MOLAR_HEAT_CAPACITY = QtyKind(
    J * MOL**-1 * K**-1, ("heat_capacity",)
)
Wikidata: Q2937190
Symbol: $C_m$
$$C_m = \frac{C}{n(\mathrm{X})}$$
$ C_m $
=
$ C $
=
$ \mathrm{X} $
=
Substance (commonly pure)

MOLAR_ENTROPY ¤

MOLAR_ENTROPY = QtyKind(J * MOL**-1 * K**-1, ("entropy",))
Wikidata: Q68972876
Symbol: $S_m$
$$S_m = \frac{S}{n(\mathrm{X})}$$
$ S_m $
=
Molar entropy (joule · mole⁻¹ · kelvin⁻¹)
$ S $
=
Entropy (joule · kelvin⁻¹)
$ \mathrm{X} $
=
Substance (commonly pure)

NUMBER_DENSITY ¤

NUMBER_DENSITY = QtyKind(M ** -3, ('number_density',))
Wikidata: Q39078574
Symbol: $n$
$$n = \frac{N}{V}$$
$ n $
=
$ N $
=
Number of entities (dimensionless)
$ V $
=

MOLECULAR_CONCENTRATION ¤

MOLECULAR_CONCENTRATION = NUMBER_DENSITY['molecular']

Number of molecules of a substance in a mixture per volume.

Wikidata: Q88865973
Symbols: $C(\mathrm{X})$ ($ \mathrm{X} $ = Substance) , $C_\mathrm{X}$ ($ \mathrm{X} $ = Substance)

MOLAR_CONCENTRATION ¤

MOLAR_CONCENTRATION = QtyKind(
    MOL * M**-3, ("concentration",)
)

Measure of the concentration of a solute in a solution, or of any chemical species, in terms of amount of substance in a given volume; most commonly expressed in units of moles of solute per litre of solution.

Wikidata: Q672821
Symbol: $c$
$$c_\mathrm{X} = \frac{n_\mathrm{X}}{V}$$
$ c $
=
$ \mathrm{X} $
=
Substance
$ V $
=

STANDARD_MOLAR_CONCENTRATION ¤

STANDARD_MOLAR_CONCENTRATION: Annotated[
    int, MOL * L**-1
] = 1
Symbol: $c^\circ(\mathrm{X})$ ($ \mathrm{X} $ = Substance)

MOLE_FRACTION ¤

MOLE_FRACTION = Dimensionless('molar_fraction')
Wikidata: Q125264
Symbols: $x$, $y_\mathrm{X}$ ($ \mathrm{X} $ = Substance, single molecule for every species in the mixture) (for gaseous mixtures)
$$x_\mathrm{X} = \frac{n_\mathrm{X}}{n_\text{total}}$$
$ x $
=
Mole fraction (dimensionless)
$ \mathrm{X} $
=
Substance, single molecule for every species in the mixture

MOLALITY ¤

MOLALITY = QtyKind(MOL * KG ** -1, ('molality',))
Wikidata: Q172623
Symbols: $b$, $m_B$ ($ B $ = Solute)
$$b_\mathrm{B} = \frac{n_\mathrm{B}}{m_\mathrm{A}}$$
$ b $
=
$ \mathrm{B} $
=
Solute
$ m $
=
$ \mathrm{A} $
=
Solvent

STANDARD_MOLALITY ¤

STANDARD_MOLALITY = MOLALITY['standard']

The chosen value of molality, commonly 1 mol per kg.

LATENT_HEAT_OF_PHASE_TRANSITION ¤

LATENT_HEAT_OF_PHASE_TRANSITION = LATENT_HEAT[
    "phase_transition"
]

Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition.

Wikidata: Q106553458
Symbol: $L_{pt}$

CHEMICAL_POTENTIAL ¤

CHEMICAL_POTENTIAL = QtyKind(
    J * MOL**-1, ("chemical_potential",)
)
Wikidata: Q737004
Symbol: $\mu$
$$\mu_\mathrm{X} = \left(\frac{\partial G}{\partial n_\mathrm{X}}\right)_{T,p}$$
$ \mu $
=
$ \mathrm{X} $
=
Substance
$ G $
=
$ T $
=
$ p $
=

ABSOLUTE_ACTIVITY ¤

ABSOLUTE_ACTIVITY = Dimensionless('absolute_activity')
Wikidata: Q56638155
Symbol: $\lambda$
$$\lambda_\mathrm{X} = \exp{\left(\frac{\mu_\mathrm{X}}{RT}\right)}$$
$ \lambda $
=
Absolute activity (dimensionless)
$ \mathrm{X} $
=
Substance
$ \mu $
=
$ R $
=
Molar gas constant (joule · mole⁻¹ · kelvin⁻¹)
$ T $
=

FUGACITY ¤

FUGACITY = QtyKind(PA)

Measure of the tendency of a substance to leave a phase.

Wikidata: Q898412
Symbols: $f$, $\tilde{p}_\mathrm{X}$ ($ \mathrm{X} $ = Substance)
$$f_\mathrm{X} = \lambda_\mathrm{X} \lim_{p_\mathrm{X} \to 0}\left(\frac{p_\mathrm{X}}{\lambda_\mathrm{X}}\right)$$
$ f $
=
$ \lambda $
=
Absolute activity (function of temperature only) (dimensionless)
$ \mathrm{X} $
=
Substance

STANDARD_CHEMICAL_POTENTIAL ¤

STANDARD_CHEMICAL_POTENTIAL = CHEMICAL_POTENTIAL["standard"]
Wikidata: Q89333468
Symbols: $\mu^{\minuso}$, $\mu^{\minuso}$
$$\mu^{\minuso}_\mathrm{B}(T, p=p^{\minuso}) = RT\ln \lambda^{\minuso}$$
$ \mu^{\minuso} $
=
$ p $
=
$ \mathrm{B} $
=
Substance
$ R $
=
Molar gas constant (joule · mole⁻¹ · kelvin⁻¹)
$ T $
=
$ \lambda^{\minuso} $
=

ACTIVITY_FACTOR ¤

ACTIVITY_FACTOR = Dimensionless('activity_factor')
Wikidata: Q89335167
Symbols: $\gamma$, $f_\mathrm{X}$ ($ \mathrm{X} $ = Substance in a liquid or solid mixture)
$$\gamma_\mathrm{X} = \frac{\lambda_\mathrm{X}}{\lambda_\mathrm{X}^* x_\mathrm{X}}$$
$ \gamma $
=
Activity factor (dimensionless)
$ \mathrm{X} $
=
Substance in a liquid or solid mixture
$ \lambda $
=
Absolute activity (dimensionless)
$ * $
=
Pure
$ x $
=
Mole fraction at the same temperature (dimensionless)

STANDARD_ABSOLUTE_ACTIVITY ¤

STANDARD_ABSOLUTE_ACTIVITY = ABSOLUTE_ACTIVITY['standard']

For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure (10⁵ Pa).

Wikidata: Q89406159
Symbol: $\lambda^{\minuso}$
$$\lambda^{\minuso}_\mathrm{X}(T) = \lambda_\mathrm{X}^*(p^{\minuso})$$
$ \lambda^{\minuso} $
=
$ T $
=
$ \mathrm{X} $
=
Substance in a liquid or solid mixture
$ \lambda $
=
Absolute activity at the same temperature (dimensionless)
$ * $
=
Pure

ACTIVITY_OF_SOLUTE ¤

ACTIVITY_OF_SOLUTE = Dimensionless('activity_of_solute')
Wikidata: Q89408862
Symbols: $a$, $a_{m,\mathrm{X}}$ ($ \mathrm{X} $ = Solute in a solution)
$$a_\mathrm{X} = \lambda_\mathrm{X} \lim_{\sum b_\mathrm{X} \to 0}\left(\frac{b_\mathrm{X}/b^{\minuso}}{\lambda_\mathrm{X}}\right)^{-1}$$
$ a $
=
Activity of solute (dimensionless)
$ \mathrm{X} $
=
Solute in a solution
$ \lambda $
=
Absolute activity (dimensionless)
$ b $
=
$ b^{\minuso} $
=

ACTIVITY_COEFFICIENT ¤

ACTIVITY_COEFFICIENT = Dimensionless("activity_coefficient")

Value accounting for thermodynamic non-ideality of mixtures.

Wikidata: Q745224
Symbol: $\gamma$
$$\gamma_\mathrm{B} = \frac{a_\mathrm{B}}{b_\mathrm{B}/b^{\minuso}}$$
$ \gamma $
=
Activity coefficient (dimensionless)
$ \mathrm{B} $
=
Solute in a solution
$ a $
=
Activity of solute (dimensionless)
$ b $
=
$ b^{\minuso} $
=

STANDARD_ABSOLUTE_ACTIVITY_IN_SOLUTION ¤

STANDARD_ABSOLUTE_ACTIVITY_IN_SOLUTION = ABSOLUTE_ACTIVITY[
    "standard", "solution"
]

Property of a solute in a solution.

Wikidata: Q89485936
Symbol: $\lambda^{\minuso}$
$$\lambda^{\minuso}_\mathrm{B}(T) = \lim_{\sum b_\mathrm{B} \to 0}\left[\lambda_\mathrm{B}\frac{(p^{\minuso})b^{\minuso}}{b_\mathrm{B}}\right]$$
$ \lambda^{\minuso} $
=
$ T $
=
$ \mathrm{B} $
=
Solute in a solution
$ b $
=
$ b^{\minuso} $
=

ACTIVITY_OF_SOLVENT ¤

ACTIVITY_OF_SOLVENT = Dimensionless('activity_of_solvent')
Wikidata: Q89486193
Symbol: $a$
$$a_\mathrm{A} = \frac{\lambda_\mathrm{A}}{\lambda^{\minuso}_\mathrm{A}}$$
$ a $
=
Activity of solvent (dimensionless)
$ \mathrm{A} $
=
Solvent in a solution
$ \lambda $
=
Absolute activity (dimensionless)
$ \lambda^{\minuso} $
=

OSMOTIC_COEFFICIENT_OF_SOLVENT ¤

OSMOTIC_COEFFICIENT_OF_SOLVENT = Dimensionless(
    "osmotic_factor_of_solvent"
)

Quantity characterizing the deviation of a solvent from ideal behavior.

Wikidata: Q5776102
Symbol: $\varphi$
$$\varphi = -\left(M_\mathrm{A}\sum_{\mathrm{B}}b_\mathrm{B}\right)^{-1}\ln a_\mathrm{A}$$
$ \varphi $
=
$ M $
=
$ \mathrm{A} $
=
Solvent
$ \mathrm{B} $
=
Solutes
$ b $
=
$ a $
=
Activity of solvent (dimensionless)

STANDARD_ABSOLUTE_ACTIVITY_OF_SOLVENT ¤

STANDARD_ABSOLUTE_ACTIVITY_OF_SOLVENT = ABSOLUTE_ACTIVITY[
    "standard", "of_solvent"
]
Wikidata: Q89556185
Symbol: $\lambda^{\minuso}$
$$\lambda^{\minuso}_\mathrm{A} = \lambda_\mathrm{A}^* p^{\minuso}$$
$ \lambda^{\minuso} $
=
$ \mathrm{A} $
=
Solvent
$ \lambda $
=
Absolute activity at the same temperature (dimensionless)
$ * $
=
Pure

OSMOTIC_PRESSURE ¤

OSMOTIC_PRESSURE = PRESSURE['osmotic']

Measure of the tendency of a solution to take in pure solvent by osmosis.

Wikidata: Q193135
Symbol: $\Pi$

STOICHIOMETRIC_NUMBER ¤

STOICHIOMETRIC_NUMBER = Dimensionless(
    "stoichiometric_number"
)

In the expression of a chemical reaction, number which is positive for products and negative for reactants.

Wikidata: Q17326453
Symbol: $\nu$
$$0 = \sum_\mathrm{B} \nu_\mathrm{B}$$
$ \mathrm{B} $
=
Substance
$ \nu $
=
Stoichiometric number (dimensionless)

STOICHIOMETRIC_NUMBER_SUM ¤

STOICHIOMETRIC_NUMBER_SUM = STOICHIOMETRIC_NUMBER['sum']

AFFINITY_OF_CHEMICAL_REACTION ¤

AFFINITY_OF_CHEMICAL_REACTION = QtyKind(
    J * MOL**-1, ("affinity",)
)

Used to describe or characterise elements' or compounds' readiness to form bonds.

Wikidata: Q382783
Symbol: $A$
$$A = -\sum_\mathrm{B} \nu_\mathrm{B}\mu_\mathrm{B} = \left(\frac{\partial G}{\partial \xi}\right)_{p,T}$$
$ \mathrm{B} $
=
Substance
$ \nu $
=
Stoichiometric number (dimensionless)
$ \mu $
=
$ G $
=
$ \xi $
=
$ p $
=
$ T $
=

EXTENT_OF_REACTION ¤

EXTENT_OF_REACTION = QtyKind(MOL, ('extent_of_reaction',))
Wikidata: Q899046
Symbol: $\xi$
$$\xi = \frac{(n_\mathrm{eq})_\mathrm{B} - (n_\mathrm{initial})_\mathrm{B}}{\nu_\mathrm{B}}$$
$ \xi $
=
$ \mathrm{B} $
=
Substance
$ n_\mathrm{eq} $
=
$ n_\mathrm{initial} $
=
$ \nu $
=
Stoichiometric number (dimensionless)

STANDARD_EQUILIBRIUM_CONSTANT ¤

STANDARD_EQUILIBRIUM_CONSTANT = Dimensionless(
    "standard_equilibrium_constant"
)
Wikidata: Q95993378
Symbol: $K^{\minuso}$
$$K^{\minuso} = \prod_\mathrm{B} (\lambda^{\minuso}_\mathrm{B})^{-\nu_\mathrm{B}}$$
$ K^{\minuso} $
=
$ \mathrm{B} $
=
Substance
$ \lambda^{\minuso} $
=
$ \nu $
=
Stoichiometric number (dimensionless)

equilibrium_constant_pressure_basis ¤

equilibrium_constant_pressure_basis(
    sum_stoichiometric_numbers: Annotated[
        Exponent, STOICHIOMETRIC_NUMBER_SUM
    ],
) -> QtyKind

Parameters:

Name Type Description Default
sum_stoichiometric_numbers Annotated[Exponent, STOICHIOMETRIC_NUMBER_SUM]

\(\sum_\text{B} \nu_\text{B}\)

required
Source code in src/isqx/_iso80000.py
1265
1266
1267
1268
1269
def equilibrium_constant_pressure_basis(
    sum_stoichiometric_numbers: Annotated[Exponent, STOICHIOMETRIC_NUMBER_SUM],
) -> QtyKind:
    r""":param sum_stoichiometric_numbers: $\sum_\text{B} \nu_\text{B}$"""
    return QtyKind(PA**sum_stoichiometric_numbers, ("equilibrium_constant",))
Wikidata: Q96096019
Symbol: $K_p$
$$K_p = \prod_\mathrm{B} (p_\mathrm{B})^{\nu_\mathrm{B}}$$
$ \mathrm{B} $
=
Substance in gas
$ p_\mathrm{B} $
=
$ \nu $
=
Stoichiometric number (dimensionless)

equilibrium_constant_concentration_basis ¤

equilibrium_constant_concentration_basis(
    sum_stoichiometric_numbers: Annotated[
        Exponent, STOICHIOMETRIC_NUMBER_SUM
    ],
) -> QtyKind

Parameters:

Name Type Description Default
sum_stoichiometric_numbers Annotated[Exponent, STOICHIOMETRIC_NUMBER_SUM]

\(\sum_\text{B} \nu_\text{B}\)

required
Source code in src/isqx/_iso80000.py
1272
1273
1274
1275
1276
1277
1278
def equilibrium_constant_concentration_basis(
    sum_stoichiometric_numbers: Annotated[Exponent, STOICHIOMETRIC_NUMBER_SUM],
) -> QtyKind:
    r""":param sum_stoichiometric_numbers: $\sum_\text{B} \nu_\text{B}$"""
    return QtyKind(
        (MOL * M**-3) ** sum_stoichiometric_numbers, ("equilibrium_constant",)
    )
Wikidata: Q96096049
Symbol: $K_c$
$$K_c = \prod_\mathrm{B} (c_\mathrm{B})^{\nu_\mathrm{B}}$$
$ \mathrm{B} $
=
Substance in solution
$ c $
=
$ \nu $
=
Stoichiometric number (dimensionless)

MICROCANONICAL_PARTITION_FUNCTION ¤

MICROCANONICAL_PARTITION_FUNCTION = Dimensionless(
    "microcanonical_partition_function"
)
Wikidata: Q96106546
Symbol: $\Omega$
$$\Omega = \sum_r 1$$
$ \Omega $
=
$ r $
=
quantum states consistent with given energy, volume and external fields (joule)

CANONICAL_PARTITION_FUNCTION ¤

CANONICAL_PARTITION_FUNCTION = Dimensionless(
    "canonical_partition_function"
)
Wikidata: Q96142389
Symbol: $Z$
$$Z = \sum_r \exp{\left(\frac{-E_r}{kT}\right)}$$
$ Z $
=
$ r $
=
Quantum states
$ E_r $
=
$ k $
=
$ T $
=

GRAND_CANONICAL_PARTITION_FUNCTION ¤

GRAND_CANONICAL_PARTITION_FUNCTION = Dimensionless(
    "grand_canonical_partition_function"
)
Wikidata: Q96176022
Symbol: $\Xi$
$$\Xi = \sum_{N_\mathrm{A},N_\mathrm{B},...} Z(N_\mathrm{A},N_\mathrm{B},...)\lambda_\mathrm{A}^{N_\mathrm{A}}\lambda_\mathrm{B}^{N_\mathrm{B}}...$$
$ \Xi $
=
$ Z $
=
$ \lambda $
=
Absolute activity (dimensionless)
$ N $
=
Number of entities (dimensionless)
$ \mathrm{A} $
=
Particle type A
$ \mathrm{B} $
=
Particle type B

MOLECULAR_PARTITION_FUNCTION ¤

MOLECULAR_PARTITION_FUNCTION = Dimensionless(
    "molecular_partition_function"
)
Wikidata: Q96192064
Symbol: $q$
$$q = \sum_r \exp{\left(\frac{-\varepsilon_r}{kT}\right)}$$
$ q $
=
$ r $
=
energy level of the molecule consistent with the given volume and external fields (meter³)
$ \varepsilon $
=
$ k $
=
$ T $
=

STATISTICAL_WEIGHT_OF_SUBSYSTEM ¤

STATISTICAL_WEIGHT_OF_SUBSYSTEM = Dimensionless(
    "statistical_weight_of_subsystem"
)

Number of microstates of a subsystem.

Wikidata: Q96207431
Symbol: $g$

MULTIPLICITY ¤

MULTIPLICITY = STATISTICAL_WEIGHT_OF_SUBSYSTEM[
    "multiplicity"
]

Statistical weight of a quantum level.

Wikidata: Q902301
Symbol: $g$

MOLAR_GAS_CONSTANT ¤

MOLAR_GAS_CONSTANT = QtyKind(
    J * MOL**-1 * K**-1, ("molar_gas_constant",)
)

Physical constant; the molar equivalent to the Boltzmann constant.

Wikidata: Q182333
Symbols: $R$, $R$, $R_m$
$$R = N_A k$$
$ R $
=
Molar gas constant (joule · mole⁻¹ · kelvin⁻¹)
$ N_A $
=
$ k $
=
Assumptions: ideal gas$$p V_m = R T$$
$ p $
=
$ V_m $
=
Molar volume (meter³ · mole⁻¹)
$ R $
=
Molar gas constant (joule · mole⁻¹ · kelvin⁻¹)
$ T $
=

MEAN_FREE_PATH ¤

MEAN_FREE_PATH = DISTANCE['mean_free_path']

Average distance travelled by a moving particle between successive impacts.

Wikidata: Q756307
Symbols: $l$, $\lambda$

DIFFUSION_COEFFICIENT ¤

DIFFUSION_COEFFICIENT = QtyKind(
    M**2 * S**-1, ("diffusion_coefficient",)
)

Proportionality constant in some physical laws.

Wikidata: Q604008
Symbol: $D$
$$C_\mathrm{B}\langle(\boldsymbol{v}_\mathrm{average})_\mathrm{B}\rangle = -D\nabla C_\mathrm{B}$$
$ C $
=
Local number density (meter⁻³)
$ \mathrm{B} $
=
Substance in the mixture
$ \boldsymbol{v} $
=
Local velocity (meter · second⁻¹)
$ D $
=

THERMAL_DIFFUSION_RATIO ¤

THERMAL_DIFFUSION_RATIO = Dimensionless(
    "thermal_diffusion_ratio"
)
Wikidata: Q96249433
Symbol: $k_T$
Assumptions: steady state, binary mixture$$\nabla x_\mathrm{B} = -\frac{k_T}{T} \nabla T$$
$ x $
=
Mole fraction (dimensionless)
$ k_T $
=
Thermal diffusion ratio (dimensionless)
$ T $
=
$ \mathrm{B} $
=
Heavier substance

THERMAL_DIFFUSION_FACTOR ¤

THERMAL_DIFFUSION_FACTOR = Dimensionless(
    "thermal_diffusion_factor"
)
Wikidata: Q96249629
Symbol: $\alpha_T$
$$\alpha_T = \frac{k_T}{x_\mathrm{A} x_\mathrm{B}}$$
$ \alpha_T $
=
Thermal diffusion factor (dimensionless)
$ k_T $
=
Thermal diffusion ratio (dimensionless)
$ x $
=
Mole fraction (dimensionless)
$ \mathrm{A} $
=
Substance A
$ \mathrm{B} $
=
Substance B

THERMAL_DIFFUSION_COEFFICIENT ¤

THERMAL_DIFFUSION_COEFFICIENT = QtyKind(
    M**2 * S**-1, ("thermal_diffusion_coefficient",)
)
Wikidata: Q96249751
Symbol: $D_T$
$$D_T = k_T D$$
$ k_T $
=
Thermal diffusion ratio (dimensionless)
$ D $
=

IONIC_STRENGTH ¤

IONIC_STRENGTH = QtyKind(MOL * KG**-1, ("ionic_strength",))

Quantification of the electrical interactions between ions in solution.

Wikidata: Q898396
Symbol: $I$
$$I = \frac{1}{2}\sum_i z_i^2 b_i$$
$ I $
=
$ z $
=
Charge number (dimensionless)
$ b $
=
$ i $
=
Ions

DEGREE_OF_DISSOCIATION ¤

DEGREE_OF_DISSOCIATION = Dimensionless(
    "degree_of_dissociation"
)

Portion of dissociated molecules.

Wikidata: Q907334
Symbol: $\alpha$
$$\alpha = \frac{n_d}{n_\text{total}}$$
$ \alpha $
=
Degree of dissociation (dimensionless)
$ n $
=
Number of entities (dimensionless)
$ d $
=
Dissociated molecules

ELECTROLYTIC_CONDUCTIVITY ¤

ELECTROLYTIC_CONDUCTIVITY = CONDUCTIVITY[
    "electrolytic", TENSOR_SECOND_ORDER
]

Measure of the ability of a solution containing electrolytes to conduct electricity.

Wikidata: Q907564
Symbol: $\kappa$
$$\kappa = \frac{J}{E}$$
$ \kappa $
=
$ J $
=
$ E $
=

MOLAR_CONDUCTIVITY ¤

MOLAR_CONDUCTIVITY = QtyKind(SIEMENS * M ** 2 * MOL ** -1)
Wikidata: Q1943278
Symbol: $\Lambda$
$$\Lambda_\mathrm{m} = \frac{\kappa}{c_\mathrm{B}}$$
$ \Lambda $
=
$ \kappa $
=
$ c $
=
$ \mathrm{B} $
=
Substance

TRANSPORT_NUMBER_OF_ION ¤

TRANSPORT_NUMBER_OF_ION = Dimensionless(
    "transport_number_of_ion"
)
Wikidata: Q331854
Symbol: $t$
$$t_\mathrm{B} = \frac{i_\mathrm{B}}{i_\text{total}}$$
$ t $
=
Transport number of ion (dimensionless)
$ \mathrm{B} $
=
Ion
$ i $
=

ANGLE_OF_OPTICAL_ROTATION ¤

ANGLE_OF_OPTICAL_ROTATION = ANGLE['optical_rotation']
Wikidata: Q96323385
Symbol: $\alpha$

AREA_CROSS_SECTION_LINEARLY_POLARIZED ¤

AREA_CROSS_SECTION_LINEARLY_POLARIZED = (
    CROSS_SECTIONAL_AREA["linearly_polarized"]
)

MOLAR_OPTICAL_ROTATORY_POWER ¤

MOLAR_OPTICAL_ROTATORY_POWER = QtyKind(
    RAD * M**2 * MOL**-1
)
Wikidata: Q96346994
Symbol: $\alpha_n$
$$\alpha_n = \alpha\frac{A}{n}$$
$ \alpha_n $
=
$ \alpha $
=
Angle of optical rotation (dimensionless)

SPECIFIC_OPTICAL_ROTATORY_POWER ¤

SPECIFIC_OPTICAL_ROTATORY_POWER = QtyKind(
    RAD * M**2 * KG**-1
)

Optical property of chiral chemical compounds.

Wikidata: Q2191631
Symbol: $\alpha_m$
$$\alpha_m = \alpha\frac{A}{m}$$
$ \alpha_m $
=
$ \alpha $
=
Angle of optical rotation (dimensionless)
$ m $
=

ATOMIC_NUMBER ¤

ATOMIC_NUMBER = Dimensionless('atomic_number')

Number of protons found in the nucleus of an atom.

Wikidata: Q23809
Symbol: $Z$

NEUTRON_NUMBER ¤

NEUTRON_NUMBER = Dimensionless('neutron_number')

Number of neutrons in a nuclide.

Wikidata: Q970319
Symbol: $N$

NUCLEON_NUMBER ¤

NUCLEON_NUMBER = Dimensionless('nucleon_number')

Number of heavy particles in the atomic nucleus.

Wikidata: Q101395
Symbol: $A$
$$A = Z + N$$
$ A $
=
Nucleon number (dimensionless)
$ Z $
=
Atomic number (dimensionless)
$ N $
=
Neutron number (dimensionless)

REST_MASS ¤

REST_MASS = MASS['rest']

Mass of a particle at rest in an intertial frame.

Wikidata: Q96941619
Symbols: $m(\mathrm{X})$ ($ \mathrm{X} $ = Particle) , $m_\mathrm{X}$ ($ \mathrm{X} $ = Particle)

REST_ENERGY ¤

REST_ENERGY = ENERGY['rest']
Wikidata: Q11663629
Symbol: $E_0$
$$E_0 = m_0 c_0^2$$
$ E_0 $
=
$ m_0 $
=

ATOMIC_MASS ¤

ATOMIC_MASS = MASS['atomic']

Rest mass of an atom in its ground state.

Wikidata: Q3840065
Symbols: $m(\mathrm{X})$ ($ \mathrm{X} $ = Atom) , $m_\mathrm{X}$ ($ \mathrm{X} $ = Atom)

NUCLIDIC_MASS ¤

NUCLIDIC_MASS = MASS['nuclidic']

Mass of a nuclide in its ground state.

Wikidata: Q97010809
Symbols: $m(\mathrm{X})$ ($ \mathrm{X} $ = Nuclide) , $m_\mathrm{X}$ ($ \mathrm{X} $ = Nuclide)

UNIFIED_ATOMIC_MASS_CONSTANT ¤

UNIFIED_ATOMIC_MASS_CONSTANT = MASS[
    "unified_atomic_mass_constant"
]

A twelfth of the mass of a carbon-12 atom in its ground state.

Wikidata: Q4817337
Symbol: $m_u$

CHARGE_NUMBER ¤

CHARGE_NUMBER = Dimensionless('charge_number')
Wikidata: Q1800063
Symbol: $c$

BOHR_RADIUS ¤

BOHR_RADIUS = LENGTH['bohr_radius']

Physical constant; the most probable distance between an electron and the nucleus in a nonrelativistic model of the hydrogen atom with infinitely heavy nucleus.

Wikidata: Q652571
Symbol: $a_0$
$$a_0 = \frac{4\pi\varepsilon_0 \hbar^2}{m_e e^2}$$
$ a_0 $
=
$ \varepsilon_0 $
=
$ \hbar $
=
$ m_e $
=

RYDBERG_CONSTANT ¤

RYDBERG_CONSTANT = QtyKind(M ** -1, ('rydberg_constant',))
Wikidata: Q658065
Symbol: $R_\infty$
$$R_\infty = \frac{m_e e^4}{8\varepsilon_0^2 h^2 c_0}$$
$ R_\infty $
=
$ m_e $
=
$ \varepsilon_0 $
=
$ h $
=

HARTREE_ENERGY ¤

HARTREE_ENERGY = ENERGY['hartree']

Atomic unit of energy.

Wikidata: Q476572
Symbol: $E_H$
$$E_H = \frac{e^2}{4\pi\varepsilon_0 a_0}$$
$ E_H $
=
$ \varepsilon_0 $
=
$ a_0 $
=

ATOMIC_MAGNETIC_DIPOLE_MOMENT ¤

ATOMIC_MAGNETIC_DIPOLE_MOMENT = MAGNETIC_MOMENT['atomic']
Wikidata: Q97143703
Symbol: $\boldsymbol{\mu}$
$$\Delta W = -\boldsymbol{\mu} \cdot \boldsymbol{B}$$
$ \Delta W $
=
$ \boldsymbol{\mu} $
=
$ \boldsymbol{B} $
=

BOHR_MAGNETON ¤

BOHR_MAGNETON = QtyKind(A * M ** 2, ('bohr_magneton',))

Unit of magnetic moment (approx. 9.2 J/T); the magnetic dipole moment of an electron orbiting an atom with angular momentum ℏ in the Bohr model.

Wikidata: Q737120
Symbol: $\mu_B$
$$\mu_B = \frac{e\hbar}{2m_e}$$
$ \mu_B $
=
$ \hbar $
=
$ m_e $
=

NUCLEAR_MAGNETON ¤

NUCLEAR_MAGNETON = QtyKind(
    A * M**2, ("nuclear_magneton",)
)

Physical constant of magnetic moment.

Wikidata: Q1166093
Symbol: $\mu_N$
$$\mu_N = \frac{e\hbar}{2m_p}$$

SPIN ¤

SPIN = QtyKind(J * S, ('spin', VECTOR))

Intrinsic form of angular momentum as a property of quantum particles.

Wikidata: Q133673
Symbol: $s$

TOTAL_ANGULAR_MOMENTUM ¤

TOTAL_ANGULAR_MOMENTUM = ANGULAR_MOMENTUM['total']
Wikidata: Q97496506
Symbol: $\boldsymbol{J}$
$$\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{s}$$
$ \boldsymbol{J} $
=
$ \boldsymbol{L} $
=
$ \boldsymbol{s} $
=

GYROMAGNETIC_RATIO ¤

GYROMAGNETIC_RATIO = QtyKind(
    A * M**2 * (J * S) ** -1, ("gyromagnetic_ratio",)
)
Wikidata: Q634552
Symbol: $\gamma$
$$\boldsymbol{\mu} = \gamma \boldsymbol{J}$$
$ \boldsymbol{\mu} $
=
$ \gamma $
=
$ \boldsymbol{J} $
=

ELECTRON_GYROMAGNETIC_RATIO ¤

ELECTRON_GYROMAGNETIC_RATIO = GYROMAGNETIC_RATIO["electron"]
Wikidata: Q97543076
Symbol: $\gamma_e$
$$\boldsymbol{\mu} = \gamma_e \boldsymbol{J}$$
$ \boldsymbol{\mu} $
=
$ \gamma_e $
=
$ \boldsymbol{J} $
=

QUANTUM_NUMBER ¤

QUANTUM_NUMBER = Dimensionless('quantum_number')

Notation for conserved quantities in physics and chemistry.

Wikidata: Q232431
Symbols: $N$, $L$, $m$, $j$, $s$, $F$

PRINCIPAL_QUANTUM_NUMBER ¤

PRINCIPAL_QUANTUM_NUMBER = QUANTUM_NUMBER['principal']

One of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.

Wikidata: Q867448
Symbol: $n$

ORBITAL_ANGULAR_MOMENTUM_QUANTUM_NUMBER ¤

ORBITAL_ANGULAR_MOMENTUM_QUANTUM_NUMBER = QUANTUM_NUMBER[
    "orbital_angular_momentum"
]

Quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital, and is symbolized as ℓ.

Wikidata: Q1916324
Symbols: $l$, $L$

MAGNETIC_QUANTUM_NUMBER ¤

MAGNETIC_QUANTUM_NUMBER = QUANTUM_NUMBER['magnetic']

Third in a set of four quantum numbers that distinguishes the orbitals available within a subshell and can be used to calculate the azimuthal component of the orientation of orbital in space.

Wikidata: Q2009727
Symbols: $m$, $m_l$, $M$

SPIN_QUANTUM_NUMBER ¤

SPIN_QUANTUM_NUMBER = QUANTUM_NUMBER['spin']
Wikidata: Q3879445
Symbol: $s$
$$|\boldsymbol{s}|^2 = \hbar^2 s(s+1)$$
$ \boldsymbol{s} $
=
$ \hbar $
=
$ s $
=
Spin quantum number (dimensionless)

TOTAL_ANGULAR_MOMENTUM_QUANTUM_NUMBER ¤

TOTAL_ANGULAR_MOMENTUM_QUANTUM_NUMBER = QUANTUM_NUMBER[
    "total_angular_momentum"
]

Quantum number describing the total angular momentum of an atom.

Wikidata: Q1141095
Symbols: $j$, $j_j$, $J$

NUCLEAR_SPIN_QUANTUM_NUMBER ¤

NUCLEAR_SPIN_QUANTUM_NUMBER = QUANTUM_NUMBER["nuclear_spin"]
Wikidata: Q97577403
Symbol: $I$
$$|\boldsymbol{J}|^2 = \hbar^2 I(I+1)$$
$ \boldsymbol{J} $
=
Angular momentum of a nucleus (joule · second)
$ \hbar $
=
$ I $
=

HYPERFINE_STRUCTURE_QUANTUM_NUMBER ¤

HYPERFINE_STRUCTURE_QUANTUM_NUMBER = QUANTUM_NUMBER[
    "hyperfine_structure"
]
Wikidata: Q97577449
Symbol: $F$

LANDE_FACTOR ¤

LANDE_FACTOR = Dimensionless('lande_factor')

g-factor for electron with spin and orbital angular momentum.

Wikidata: Q1191684
Symbol: $g$
$$g = \frac{\mu}{J\mu_B}$$
$ g $
=
Lande factor (dimensionless)
$ J $
=
$ \mu_B $
=

G_FACTOR_NUCLEUS ¤

G_FACTOR_NUCLEUS = Dimensionless('g_factor_nucleus')
Wikidata: Q97591250
Symbol: $g$
$$g = \frac{\mu}{I\mu_N}$$
$ g $
=
G factor nucleus (dimensionless)
$ I $
=
$ \mu_N $
=

LARMOR_ANGULAR_FREQUENCY ¤

LARMOR_ANGULAR_FREQUENCY = ANGULAR_FREQUENCY['larmor']
Wikidata: Q97617059
Symbol: $\omega_L$
$$\omega_L = -\frac{e}{2m_e}B$$
$ \omega_L $
=
$ m_e $
=
Rest mass of electron (kilogram)

LARMOR_FREQUENCY ¤

LARMOR_FREQUENCY = QtyKind(S ** -1, ('larmor_frequency',))
Wikidata: Q97617324
Symbol: $\nu_L$
$$\nu_L = \frac{\omega_L}{2\pi}$$
$ \nu_L $
=
$ \omega_L $
=

LARMOR_PRECESSION_ANGULAR_FREQUENCY ¤

LARMOR_PRECESSION_ANGULAR_FREQUENCY = ANGULAR_FREQUENCY[
    "larmor_precession"
]
Wikidata: Q97641779
Symbol: $\omega_N$
$$\omega_N = \gamma B$$
$ \gamma $
=

CYCLOTRON_ANGULAR_FREQUENCY ¤

CYCLOTRON_ANGULAR_FREQUENCY = ANGULAR_FREQUENCY["cyclotron"]

Angular frequency of a charged particle moving on a circular path perpendicular to a uniform magnetic field.

Wikidata: Q97708211
Symbol: $\omega_c$
$$\omega_c = \frac{|q|}{m}B$$

GYRORADIUS ¤

GYRORADIUS = RADIUS['gyroradius']

Radius of the circular movement of an electrically charged particle in a magnetic field.

Wikidata: Q1194458
Symbols: $r_c$, $r_L$
$$r_c = \frac{m|\boldsymbol{v}\times\boldsymbol{B}|}{qB^2}$$
$ r_c $
=
$ m $
=
$ \boldsymbol{v} $
=
Velocity (meter · second⁻¹)
$ \boldsymbol{B} $
=

NUCLEAR_QUADRUPOLE_MOMENT ¤

NUCLEAR_QUADRUPOLE_MOMENT = QtyKind(
    M**2, ("nuclear_quadrupole_moment",)
)

Measure for the deviation of the nuclear charge density from spherical symmetry.

Wikidata: Q97921226
Symbol: $Q$
$$Q = \frac{1}{e}\int (3z^2-r^2)\rho(x,y,z)dV$$
$ z $
=
$ r $
=
$ \rho $
=
$ dV $
=

NUCLEAR_RADIUS ¤

NUCLEAR_RADIUS = RADIUS['nuclear']

Measure of the size of atomic nuclei.

Wikidata: Q3535676
Symbol: $R$
$$R = r_0 A^{1/3}$$
$ R $
=
$ r_0 $
=
Empirical constant
$ A $
=
Nucleon number (dimensionless)

ELECTRON_RADIUS ¤

ELECTRON_RADIUS = RADIUS['electron']

Physical constant providing length scale to interatomic interactions.

Wikidata: Q2152581
Symbol: $r_e$
$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c_0^2}$$
$ r_e $
=
$ \varepsilon_0 $
=
$ m_e $
=

COMPTON_WAVELENGTH ¤

COMPTON_WAVELENGTH = WAVELENGTH['compton']

In quantum mechanics, the wavelength of a photon whose energy is the same as the rest energy of a particle.

Wikidata: Q1145377
Symbol: $\lambda_C$
$$\lambda_C = \frac{h}{m c_0}$$
$ \lambda_C $
=
$ h $
=
$ m $
=

MASS_EXCESS ¤

MASS_EXCESS = MASS['excess']
Wikidata: Q1571163
Symbol: $\Delta$
$$\Delta = m_a - A m_u$$
$ \Delta $
=
$ m_a $
=
$ A $
=
Nucleon number (dimensionless)

MASS_DEFECT ¤

MASS_DEFECT = MASS['defect']

Equivalent mass of the binding energy of an atomic nucleus.

Wikidata: Q26897126
Symbol: $B$
$$B = Z m(^1\mathrm{H}) + N m_n - m_a$$
$ B $
=
$ Z $
=
Atomic number (dimensionless)
$ m $
=
$ N $
=
Neutron number (dimensionless)
$ m_n $
=
$ m_a $
=

RELATIVE_MASS_EXCESS ¤

RELATIVE_MASS_EXCESS = Dimensionless("relative_mass_excess")
Wikidata: Q98038610
Symbol: $\Delta_r$
$$\Delta_r = \frac{\Delta}{m_u}$$
$ \Delta_r $
=
Relative mass excess (dimensionless)
$ \Delta $
=

RELATIVE_MASS_DEFECT ¤

RELATIVE_MASS_DEFECT = Dimensionless("relative_mass_defect")
Wikidata: Q98038718
Symbol: $B_r$
$$B_r = \frac{B}{m_u}$$
$ B_r $
=
Relative mass defect (dimensionless)
$ B $
=

PACKING_FRACTION ¤

PACKING_FRACTION = Dimensionless('packing_fraction')
Wikidata: Q98058276
Symbol: $f$
$$f = \frac{\Delta_r}{A}$$
$ f $
=
Packing fraction (dimensionless)
$ \Delta_r $
=
Relative mass excess (dimensionless)
$ A $
=
Nucleon number (dimensionless)

BINDING_FRACTION ¤

BINDING_FRACTION = Dimensionless('binding_fraction')
Wikidata: Q98058362
Symbol: $b$
$$b = \frac{B_r}{A}$$
$ b $
=
Binding fraction (dimensionless)
$ B_r $
=
Relative mass defect (dimensionless)
$ A $
=
Nucleon number (dimensionless)

DECAY_CONSTANT ¤

DECAY_CONSTANT = QtyKind(S ** -1, ('decay_constant',))
Wikidata: Q11477200
Symbol: $\lambda$
$$\lambda = -\frac{1}{N}\frac{dN}{dt}$$
$ \lambda $
=
$ N $
=
Number of entities (dimensionless)
$ t $
=

MEAN_LIFE_TIME ¤

MEAN_LIFE_TIME = DURATION['mean_life_time']
Wikidata: Q1758559
Symbol: $\tau$
$$\tau = \frac{1}{\lambda}$$
$ \tau $
=
$ \lambda $
=

LEVEL_WIDTH ¤

LEVEL_WIDTH = ENERGY['level_width']
Wikidata: Q98082340
Symbol: $\Gamma$
$$\Gamma = \frac{\hbar}{\tau}$$
$ \Gamma $
=
$ \hbar $
=
$ \tau $
=

ACTIVITY ¤

ACTIVITY = QtyKind(BQ, ('activity',))

Physical quantity in nuclear physics, measured in becquerel, revealing the average number of nucleuses experiencing a spontaneous reaction per second.

Wikidata: Q317949
Symbol: $A$
$$A = -\frac{dN}{dt}$$
$ A $
=
$ N $
=
Number of entities (dimensionless)
$ t $
=

SPECIFIC_ACTIVITY ¤

SPECIFIC_ACTIVITY = QtyKind(
    BQ * KG**-1, ("specific_activity",)
)
Wikidata: Q2823748
Symbol: $a$
$$a = \frac{A}{m}$$
$ A $
=
$ m $
=

ACTIVITY_DENSITY ¤

ACTIVITY_DENSITY = QtyKind(
    BQ * M**-3, ("activity_density",)
)
Wikidata: Q423263
Symbol: $c_A$
$$c_A = \frac{A}{V}$$
$ c_A $
=
$ A $
=
$ V $
=

SURFACE_ACTIVITY_DENSITY ¤

SURFACE_ACTIVITY_DENSITY = QtyKind(
    BQ * M**-2, ("surface_activity_density",)
)
Wikidata: Q98103005
Symbol: $a_S$
$$a_S = \frac{A}{S}$$
$ A $
=
$ S $
=
Area (meter²)

HALF_LIFE ¤

HALF_LIFE = DURATION['half_life']

In nuclear physics, mean duration after which half of the atomic nuclei has decayed.

Wikidata: Q98118544
Symbol: $T_{1/2}$
$$T_{1/2} = \frac{\ln 2}{\lambda}$$
$ T_{1/2} $
=
$ \lambda $
=

ALPHA_DISINTEGRATION_ENERGY ¤

ALPHA_DISINTEGRATION_ENERGY = ENERGY["alpha_disintegration"]
Wikidata: Q98146025
Symbol: $Q_\alpha$

MAXIMUM_BETA_PARTICLE_ENERGY ¤

MAXIMUM_BETA_PARTICLE_ENERGY = ENERGY['max_beta_particle']
Wikidata: Q98148038
Symbol: $E_\beta$

BETA_DISINTEGRATION_ENERGY ¤

BETA_DISINTEGRATION_ENERGY = ENERGY['beta_disintegration']
Wikidata: Q98148340
Symbol: $Q_\beta$

INTERNAL_CONVERSION_FACTOR ¤

INTERNAL_CONVERSION_FACTOR = Dimensionless(
    "internal_conversion_factor"
)

Ratio of electron to gamma ray emissions.

Wikidata: Q6047819
Symbol: $\alpha$

PARTICLE_EMISSION_RATE ¤

PARTICLE_EMISSION_RATE = QtyKind(
    S**-1, ("particle_emission_rate",)
)
Wikidata: Q98153151
Symbol: $\dot{N}$
$$\dot{N} = \frac{dN}{dt}$$
$ \dot{N} $
=
$ N $
=
Number of entities (dimensionless)
$ t $
=

REACTION_ENERGY ¤

REACTION_ENERGY = ENERGY['reaction']

In a nuclear reaction, sum of kinetic and photon energies of the products minus the energies of the reactants.

Wikidata: Q98164745
Symbol: $Q$

RESONANCE_ENERGY ¤

RESONANCE_ENERGY = ENERGY['resonance']

Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle.

Wikidata: Q98165187
Symbol: $E_\text{res}$

CROSS_SECTION ¤

CROSS_SECTION = AREA['cross_section_atomic']

Measure of probability that a specific process will take place in a collision of two particles.

Wikidata: Q17128025
Symbol: $\sigma$

TOTAL_CROSS_SECTION ¤

TOTAL_CROSS_SECTION = CROSS_SECTION['total']
Wikidata: Q98206553
Symbol: $\sigma_\text{tot}$

DIRECTION_DISTRIBUTION_OF_CROSS_SECTION ¤

DIRECTION_DISTRIBUTION_OF_CROSS_SECTION = QtyKind(
    M**2 * SR**-1,
    ("direction_distribution_of_cross_section",),
)
Wikidata: Q98266630
Symbol: $\sigma_\Omega$
$$\sigma_\Omega = \frac{d\sigma}{d\Omega}$$
$ \sigma_\Omega $
=
$ \sigma $
=
$ \Omega $
=
Solid angle (dimensionless)

ENERGY_DISTRIBUTION_OF_CROSS_SECTION ¤

ENERGY_DISTRIBUTION_OF_CROSS_SECTION = QtyKind(
    M**2 * J**-1,
    ("energy_distribution_of_cross_section",),
)
Wikidata: Q98267245
Symbol: $\sigma_E$
$$\sigma_E = \frac{d\sigma}{dE}$$
$ \sigma_E $
=
$ \sigma $
=
$ E $
=

DIRECTION_AND_ENERGY_DISTRIBUTION_OF_CROSS_SECTION ¤

DIRECTION_AND_ENERGY_DISTRIBUTION_OF_CROSS_SECTION = QtyKind(
    M**2 * J**-1 * SR**-1,
    ("direction_and_energy_distribution_of_cross_section",),
)
Wikidata: Q98269571
Symbol: $\sigma_{\Omega,E}$
$$\sigma_{\Omega,E} = \frac{\partial^2\sigma}{\partial\Omega\partial E}$$
$ \sigma_{\Omega,E} $
=
$ \sigma $
=
$ \Omega $
=
Solid angle (dimensionless)
$ E $
=

VOLUMIC_CROSS_SECTION ¤

VOLUMIC_CROSS_SECTION = QtyKind(
    M**-1, ("volumic_cross_section",)
)
Wikidata: Q98280520
Symbol: $\Sigma$
$$\Sigma = n_a \sigma_a$$
$ \Sigma $
=
$ n_a $
=
$ \sigma_a $
=

VOLUMIC_TOTAL_CROSS_SECTION ¤

VOLUMIC_TOTAL_CROSS_SECTION = QtyKind(
    M**-1, ("volumic_total_cross_section",)
)
Wikidata: Q98280548
Symbol: $\Sigma_\text{tot}$
$$\Sigma_\text{tot} = n_a \sigma_\text{tot}$$
$ \Sigma_\text{tot} $
=
$ n_a $
=
$ \sigma_\text{tot} $
=

PARTICLE_FLUENCE ¤

PARTICLE_FLUENCE = QtyKind(M ** -2, ('particle_fluence',))
Wikidata: Q82965908
Symbol: $\Phi$
$$\Phi = \frac{dN}{da}$$
$ \Phi $
=
$ N $
=
Number of entities (dimensionless)
$ a $
=

PARTICLE_FLUENCE_RATE ¤

PARTICLE_FLUENCE_RATE = QtyKind(
    M**-2 * S**-1, ("particle_fluence_rate",)
)
Wikidata: Q98497410
Symbols: $\dot{\Phi}$, $\varphi$
$$\dot{\Phi} = \frac{d\Phi}{dt}$$
$ \dot{\Phi} $
=
$ \Phi $
=
$ t $
=

IONIZING_RADIANT_ENERGY ¤

IONIZING_RADIANT_ENERGY = ENERGY['radiant_ionizing']

In nuclear physics, mean energy of emitted, transferred or received particles.

Wikidata: Q98538346
Symbol: $R$

ENERGY_FLUENCE ¤

ENERGY_FLUENCE = QtyKind(J * M**-2, ("energy_fluence",))
Wikidata: Q98538612
Symbol: $\Psi$
$$\Psi = \frac{dR}{da}$$
$ \Psi $
=
$ a $
=

ENERGY_FLUENCE_RATE ¤

ENERGY_FLUENCE_RATE = QtyKind(
    W * M**-2, ("energy_fluence_rate",)
)
Wikidata: Q65274525
Symbols: $\dot{\Psi}$, $\psi$
$$\dot{\Psi} = \frac{d\Psi}{dt}$$
$ \dot{\Psi} $
=
$ \Psi $
=
$ t $
=

PARTICLE_CURRENT_DENSITY ¤

PARTICLE_CURRENT_DENSITY = QtyKind(
    M**-2 * S**-1, ("particle_current_density",)
)
Wikidata: Q2400689
Symbol: $J$

IONIZING_LINEAR_ATTENUATION_COEFFICIENT ¤

IONIZING_LINEAR_ATTENUATION_COEFFICIENT = QtyKind(
    M**-1, ("linear_attenuation_ionizing",)
)
Wikidata: Q98583077
Symbols: $\mu$, $\mu_l$
$$\mu = \frac{1}{N}\frac{dN}{dl}$$
$ N $
=
Number of entities (dimensionless)
$ l $
=

IONIZING_MASS_ATTENUATION_COEFFICIENT ¤

IONIZING_MASS_ATTENUATION_COEFFICIENT = QtyKind(
    KG**-1 * M**2, ("mass_attenuation_ionizing",)
)
Wikidata: Q98591983
Symbol: $\mu_m$
$$\mu_m = \frac{\mu}{\rho}$$

MOLAR_ATTENUATION_COEFFICIENT ¤

MOLAR_ATTENUATION_COEFFICIENT = QtyKind(
    M**2 * MOL**-1, ("molar_attenuation_coefficient",)
)
Wikidata: Q98592828
Symbol: $\mu_c$
$$\mu_c = \frac{\mu}{c}$$

ATOMIC_ATTENUATION_COEFFICIENT ¤

ATOMIC_ATTENUATION_COEFFICIENT = QtyKind(
    M**2, ("atomic_attenuation_coefficient",)
)
Wikidata: Q98592911
Symbol: $\mu_a$
$$\mu_a = \frac{\mu}{n}$$

HALF_VALUE_THICKNESS ¤

HALF_VALUE_THICKNESS = THICKNESS['half_value']

Thickness of an attenuating layer which reduces the value of a quantity to half of its initial value.

Wikidata: Q127526
Symbol: $d_{1/2}$

TOTAL_LINEAR_STOPPING_POWER ¤

TOTAL_LINEAR_STOPPING_POWER = QtyKind(
    J * M**-1, ("total_linear_stopping_power",)
)
Wikidata: Q908474
Symbols: $S$, $S_l$
$$S = -\frac{dE}{dx}$$
$ E $
=
Energy lost by charged particles (joule)
$ x $
=

TOTAL_MASS_STOPPING_POWER ¤

TOTAL_MASS_STOPPING_POWER = QtyKind(
    J * M**2 * KG**-1, ("total_mass_stopping_power",)
)
Wikidata: Q98642795
Symbol: $S_m$
$$S_m = \frac{S_l}{\rho}$$
$ S_m $
=
$ \rho $
=

MEAN_LINEAR_RANGE ¤

MEAN_LINEAR_RANGE = LENGTH['mean_linear_range']

Mean path length traveled by particles of a given initial energy slowing down to rest in a given material.

Wikidata: Q98681589
Symbols: $R$, $R_l$

MEAN_MASS_RANGE ¤

MEAN_MASS_RANGE = QtyKind(KG * M**-2, ("mean_mass_range",))
Wikidata: Q98681670
Symbols: $R_\rho$, $R_m$
$$R_m = R_l \rho$$
$ R_m $
=
$ R_l $
=
$ \rho $
=

LINEAR_IONIZATION ¤

LINEAR_IONIZATION = QtyKind(M**-1, ("linear_ionization",))

Mean number of elementary charges per path length of all ions produced by an ionizing, charged particle.

Wikidata: Q98690755
Symbol: $N_\mathrm{il}$
$$N_\mathrm{il} = \frac{1}{e}\frac{dq}{dl}$$
$ N_\mathrm{il} $
=
$ l $
=

TOTAL_IONIZATION ¤

TOTAL_IONIZATION = Dimensionless('total_ionization')

Mean number of elementary charges of all ions produced by an ionizing, charged particle along its entire path.

Wikidata: Q98690787
Symbol: $N_i$
$$N_i = \int N_\mathrm{il} dl$$
$ N_i $
=
Total ionization (dimensionless)
$ N_\mathrm{il} $
=
$ l $
=

AVERAGE_ENERGY_LOSS_PER_ELEMENTARY_CHARGE_PRODUCED ¤

AVERAGE_ENERGY_LOSS_PER_ELEMENTARY_CHARGE_PRODUCED = ENERGY[
    "average_energy_loss_per_elementary_charge_produced"
]
Wikidata: Q98793042
Symbol: $W_i$
$$W_i = \frac{E_k}{N_i}$$

MOBILITY ¤

MOBILITY = QtyKind(M**2 * V**-1 * S**-1, ("mobility",))
Wikidata: Q900648
Symbols: $\mu$, $\mu_m$

PARTICLE_NUMBER_DENSITY ¤

PARTICLE_NUMBER_DENSITY = NUMBER_DENSITY['particle']
Wikidata: Q98601569
Symbol: $n$
$$n = \frac{N}{V}$$
$ N $
=
Number of entities (dimensionless)
$ V $
=

ION_NUMBER_DENSITY ¤

ION_NUMBER_DENSITY = NUMBER_DENSITY['ion']

Number of ions per volume.

Wikidata: Q98831218
Symbol: $n$
$$n^\pm = \frac{N^\pm}{V}$$
$ n $
=
$ N $
=
Number of entities (dimensionless)
$ V $
=

RECOMBINATION_COEFFICIENT ¤

RECOMBINATION_COEFFICIENT = QtyKind(
    M**3 * S**-1, ("recombination_coefficient",)
)

Measure for the recombination rate of ions.

Wikidata: Q98842099
Symbol: $\alpha$
$$-\frac{dn^\pm}{dt} = \alpha n^+ n^-$$
$ \alpha $
=
$ n $
=
$ t $
=

DIFFUSION_COEFFICIENT_PARTICLE_NUMBER_DENSITY ¤

DIFFUSION_COEFFICIENT_PARTICLE_NUMBER_DENSITY = QtyKind(
    M**2 * S**-1,
    ("diffusion_coefficient_particle_number_density",),
)
Wikidata: Q98875545
Symbols: $D_n$, $D$
$$J = -D_n \nabla n$$

DIFFUSION_COEFFICIENT_FLUENCE_RATE ¤

DIFFUSION_COEFFICIENT_FLUENCE_RATE = QtyKind(
    M, ("diffusion_coefficient_fluence_rate",)
)
Wikidata: Q98876254
Symbols: $D$, $D_\Phi$
$$J = -D \nabla \dot{\Phi}$$
$ J $
=
$ \dot{\Phi} $
=

PARTICLE_SOURCE_DENSITY ¤

PARTICLE_SOURCE_DENSITY = QtyKind(
    M**-3 * S**-1, ("particle_source_density",)
)
Wikidata: Q98915762
Symbol: $S$

SLOWING_DOWN_DENSITY ¤

SLOWING_DOWN_DENSITY = QtyKind(
    M**-3 * S**-1, ("slowing_down_density",)
)
Wikidata: Q98915830
Symbol: $q$
$$q = \frac{dn}{dt}$$
$ q $
=
$ n $
=
Number of entities (dimensionless)
$ t $
=

RESONANCE_ESCAPE_PROBABILITY ¤

RESONANCE_ESCAPE_PROBABILITY = Dimensionless(
    "resonance_escape_probability"
)

Probability that a high-energy neutron is not captured.

Wikidata: Q4108072
Symbol: $p$

LETHARGY ¤

LETHARGY = Dimensionless('lethargy')

Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron.

Wikidata: Q25508781
Symbol: $u$
$$u = \ln(E_0/E)$$
$ u $
=
Lethargy (dimensionless)
$ E_0 $
=
Reference energy
$ E $
=

AVERAGE_LOGARITHMIC_ENERGY_DECREMENT ¤

AVERAGE_LOGARITHMIC_ENERGY_DECREMENT = Dimensionless(
    "average_logarithmic_energy_decrement"
)

Average increase in lethargy per collision of neutrons with atomic nuclei.

Wikidata: Q1940739
Symbol: $\xi$

MEAN_FREE_PATH_ATOMIC ¤

MEAN_FREE_PATH_ATOMIC = MEAN_FREE_PATH['atomic']

In nuclear physics, average distance that particles travel between two specified interactions.

Wikidata: Q98950584
Symbols: $l$, $\lambda$

SLOWING_DOWN_AREA ¤

SLOWING_DOWN_AREA = AREA['slowing_down']

One sixth of the mean squared distance between a neutron source and the point at which the neutron reaches a given energy.

Wikidata: Q98950918
Symbol: $L_s^2$

DIFFUSION_AREA ¤

DIFFUSION_AREA = AREA['diffusion']

One sixth of the mean squared distance where a neutron enters an energy class and the point where it leaves this class.

Wikidata: Q98966292
Symbol: $L^2$

MIGRATION_AREA ¤

MIGRATION_AREA = AREA['migration']

Sum of the slowing-down area of neutrons from fission to thermal energy and the diffusion area of thermal neutrons.

Wikidata: Q98966325
Symbol: $M^2$

SLOWING_DOWN_LENGTH ¤

SLOWING_DOWN_LENGTH = LENGTH['slowing_down']
Wikidata: Q98996963
Symbol: $L_s$
$$L_s = \sqrt{L_s^2}$$
$ L_s^2 $
=

DIFFUSION_LENGTH_ATOMIC ¤

DIFFUSION_LENGTH_ATOMIC = LENGTH['diffusion_atomic']
Wikidata: Q98997762
Symbol: $L$
$$L = \sqrt{L^2}$$

MIGRATION_LENGTH ¤

MIGRATION_LENGTH = LENGTH['migration']
Wikidata: Q98998318
Symbol: $M$
$$M = \sqrt{M^2}$$
$ M^2 $
=

NEUTRON_YIELD_PER_FISSION ¤

NEUTRON_YIELD_PER_FISSION = Dimensionless(
    "neutron_yield_per_fission"
)

Average number of fission neutrons emitted per fission event.

Wikidata: Q99157909
Symbol: $\nu$

NEUTRON_YIELD_PER_ABSORPTION ¤

NEUTRON_YIELD_PER_ABSORPTION = Dimensionless(
    "neutron_yield_per_absorption"
)

Average number of fission neutrons emitted per absorbed neutron.

Wikidata: Q99159075
Symbol: $\eta$

FAST_FISSION_FACTOR ¤

FAST_FISSION_FACTOR = Dimensionless('fast_fission_factor')
Wikidata: Q99197493
Symbol: $\varphi$

THERMAL_UTILIZATION_FACTOR ¤

THERMAL_UTILIZATION_FACTOR = Dimensionless(
    "thermal_utilization_factor"
)
Wikidata: Q99197650
Symbol: $f$

NON_LEAKAGE_PROBABILITY ¤

NON_LEAKAGE_PROBABILITY = Dimensionless(
    "non_leakage_probability"
)

Probability, that a neutron won't escape a reactor while slowing down or while diffusing as thermal neutron.

Wikidata: Q99415566
Symbol: $\Lambda$

MULTIPLICATION_FACTOR ¤

MULTIPLICATION_FACTOR = Dimensionless(
    "multiplication_factor"
)
Wikidata: Q99440471
Symbol: $k$

INFINITE_MULTIPLICATION_FACTOR ¤

INFINITE_MULTIPLICATION_FACTOR = Dimensionless(
    "infinite_multiplication_factor"
)

In nuclear physics, the multiplication factor for an infinite medium.

Wikidata: Q99440487
Symbol: $k_\infty$

REACTOR_TIME_CONSTANT ¤

REACTOR_TIME_CONSTANT = DURATION['reactor_time_constant']

Duration, in which the neutron fluence rate in a reactor changes by a factor e.

Wikidata: Q99518950
Symbol: $T$

ENERGY_IMPARTED ¤

ENERGY_IMPARTED = ENERGY['imparted']
Wikidata: Q99526944
Symbol: $\varepsilon$
$$\varepsilon = \sum_i \varepsilon_i$$
$ \varepsilon $
=

MEAN_ENERGY_IMPARTED ¤

MEAN_ENERGY_IMPARTED = ENERGY['mean_imparted']

In nuclear physics, expectation value of the energy imparted.

Wikidata: Q99526969
Symbol: $\bar{\varepsilon}$
$$\bar{\varepsilon} = R_\text{in} - R_\text{out} + \sum Q$$
$ \bar{\varepsilon} $
=
$ Q $
=

ABSORBED_DOSE ¤

ABSORBED_DOSE = QtyKind(GY, ('absorbed_dose',))
Wikidata: Q215313
Symbol: $D$
$$D = \frac{d\bar{\varepsilon}}{dm}$$
$ D $
=
$ \bar{\varepsilon} $
=
$ m $
=

SPECIFIC_ENERGY_IMPARTED ¤

SPECIFIC_ENERGY_IMPARTED = QtyKind(
    GY, ("specific_energy_imparted",)
)
Wikidata: Q99566195
Symbol: $z$
$$z = \frac{\varepsilon}{m}$$
$ \varepsilon $
=
$ m $
=

IONIZING_QUALITY_FACTOR ¤

IONIZING_QUALITY_FACTOR = Dimensionless(
    "quality_factor_ionizing"
)

Factor taking into account health effects in the determination of the dose equivalent.

Wikidata: Q2122099
Symbol: $Q$

DOSE_EQUIVALENT ¤

DOSE_EQUIVALENT = QtyKind(SV, ('dose_equivalent',))
Wikidata: Q256106
Symbol: $H$
$$H = DQ$$
$ D $
=
$ Q $
=
Ionizing quality factor (dimensionless)

DOSE_EQUIVALENT_RATE ¤

DOSE_EQUIVALENT_RATE = QtyKind(
    SV * S**-1, ("dose_equivalent_rate",)
)
Wikidata: Q99604810
Symbol: $\dot{H}$
$$\dot{H} = \frac{dH}{dt}$$
$ \dot{H} $
=
$ t $
=

ABSORBED_DOSE_RATE ¤

ABSORBED_DOSE_RATE = QtyKind(
    GY * S**-1, ("absorbed_dose_rate",)
)
Wikidata: Q69428958
Symbol: $\dot{D}$
$$\dot{D} = \frac{dD}{dt}$$
$ \dot{D} $
=
$ D $
=
$ t $
=

LINEAR_ENERGY_TRANSFER ¤

LINEAR_ENERGY_TRANSFER = QtyKind(
    J * M**-1, ("linear_energy_transfer",)
)
Wikidata: Q1699996
Symbol: $L_\Delta$
$$L_\Delta = \frac{dE_\Delta}{dl}$$
$ L_\Delta $
=
$ E $
=
$ l $
=

KERMA ¤

KERMA = QtyKind(GY, ('kerma',))

Kinetic energy released per mass.

Wikidata: Q1739288
Symbol: $K$
$$K = \frac{dE_\mathrm{tr}}{dm}$$
$ K $
=
$ E_\mathrm{tr} $
=
$ m $
=

KERMA_RATE ¤

KERMA_RATE = QtyKind(GY * S ** -1, ('kerma_rate',))
Wikidata: Q1739280
Symbol: $\dot{K}$
$$\dot{K} = \frac{dK}{dt}$$
$ \dot{K} $
=
$ K $
=
$ t $
=

MASS_ENERGY_TRANSFER_COEFFICIENT ¤

MASS_ENERGY_TRANSFER_COEFFICIENT = QtyKind(
    KG**-1 * M**2, ("mass_energy_transfer_coefficient",)
)

For ionizing uncharged particles, measure for the energy transferred to charged particles in the form of kinetic energy.

Wikidata: Q99714619
Symbol: $\frac{\mu_\mathrm{tr}}{\rho}$
$$\frac{\mu_\mathrm{tr}}{\rho} = \frac{1}{\rho}\frac{1}{R}\frac{dR_\mathrm{tr}}{dl}$$
$ \frac{\mu_\mathrm{tr}}{\rho} $
=
$ \rho $
=
$ l $
=

IONIZING_EXPOSURE ¤

IONIZING_EXPOSURE = QtyKind(
    C * KG**-1, ("exposure_ionizing",)
)

Electric charge of ions produced in air by X- or gamma radiation per mass of air, when all liberated electrons are completely stopped.

Wikidata: Q336938
Symbol: $X$
$$X = \frac{dq}{dm}$$
$ X $
=
$ m $
=

EXPOSURE_RATE ¤

EXPOSURE_RATE = QtyKind(
    C * KG**-1 * S**-1, ("exposure_rate",)
)
Wikidata: Q99720212
Symbol: $\dot{X}$
$$\dot{X} = \frac{dX}{dt}$$
$ \dot{X} $
=
$ X $
=
$ t $
=

SHEAR_RATE ¤

SHEAR_RATE = QtyKind(S ** -1, ('shear_rate',))

VOLUME_FRACTION ¤

VOLUME_FRACTION = QtyKind(
    M**3 * M**-3, ("volume_fraction",)
)
Wikidata: Q909482
Symbol: $\phi$
$$\phi_\mathrm{X} = \frac{x_\mathrm{X} ({V_m})_\mathrm{X}}{\sum_i x_i ({V_m})_i}$$
$ \phi $
=
$ \mathrm{X} $
=
Substance
$ x $
=
Mole fraction (dimensionless)
$ V_m $
=
Molar volume (meter³ · mole⁻¹)
$ i $
=
All pure substances in mixture

MEAN_BEARING_PRESSURE ¤

MEAN_BEARING_PRESSURE = PRESSURE['mean_bearing']

BOUNDARY_LAYER_THICKNESS ¤

BOUNDARY_LAYER_THICKNESS = THICKNESS['boundary_layer']

PRESSURE_GRADIENT ¤

PRESSURE_GRADIENT = QtyKind(
    PA * M**-1, ("pressure_gradient",)
)

VOLUMIC_HEAT_GENERATION_RATE ¤

VOLUMIC_HEAT_GENERATION_RATE = QtyKind(
    W * M**-3, ("volumic_heat_generation_rate",)
)

RELAXATION_TIME ¤

RELAXATION_TIME = DURATION['relaxation']

OBSERVATION_DURATION ¤

OBSERVATION_DURATION = DURATION['observation']

POROSITY ¤

POROSITY = Dimensionless('porosity')

MASS_TRANSFER_COEFFICIENT ¤

MASS_TRANSFER_COEFFICIENT = QtyKind(
    M * S**-1, ("mass_transfer_coefficient",)
)

AXIAL_SPEED ¤

AXIAL_SPEED = SPEED['axial']

LIFT ¤

LIFT = FORCE['lift']

THRUST ¤

THRUST = FORCE['thrust']

VAPOUR_PRESSURE ¤

VAPOUR_PRESSURE = PRESSURE['vapour']

PRESSURE_DROP ¤

PRESSURE_DROP = PRESSURE[DELTA]
Symbol: $\Delta p$
$$\Delta p = p_u - p_d$$
$ \Delta p $
=
$ p_u $
=
Pressure upstream (pascal)
$ p_d $
=
Pressure downstream (pascal)

LATITUDE ¤

LATITUDE = ANGLE['latitude']

LONGITUDE ¤

LONGITUDE = ANGLE['longitude']

REYNOLDS_NUMBER ¤

REYNOLDS_NUMBER = Dimensionless('reynolds_number')

Dimensionless quantity that is used to help predict similar flow patterns in different fluid flow situations.

Wikidata: Q178932
Symbol: $Re$
$$Re = \frac{\rho u L}{\eta} = \frac{u L}{\nu}$$
$ Re $
=
Reynolds number (dimensionless)
$ \rho $
=
$ u $
=
Speed of fluid (meter · second⁻¹)
$ L $
=
characteristic length (meter)
$ \eta $
=
$ \nu $
=

EULER_NUMBER ¤

EULER_NUMBER = Dimensionless('euler_number')

Dimensionless caracteristic number used in fluid mechanics, defined as the ratio of pressure forces and inertial forces used to characterize losses in a moving fluid.

Wikidata: Q1340031
Symbol: $Eu$
$$Eu = \frac{\Delta p}{\rho u^2}$$
$ Eu $
=
Euler number (dimensionless)
$ \Delta p $
=
$ \rho $
=
$ u $
=
Speed of fluid (meter · second⁻¹)

FROUDE_NUMBER ¤

FROUDE_NUMBER = Dimensionless('froude_number')

Dimensionless number defined as the ratio of the flow inertia to the external field.

Wikidata: Q273090
Symbol: $Fr$
$$Fr = \frac{u}{\sqrt{Lg}}$$
$ Fr $
=
Froude number (dimensionless)
$ u $
=
Speed of fluid (meter · second⁻¹)
$ L $
=
characteristic length (meter)

GRASHOF_NUMBER ¤

GRASHOF_NUMBER = Dimensionless('grashof_number')

Characteristic number in fluid dynamics.

Wikidata: Q868719
Symbol: $Gr$
$$Gr = \frac{g \alpha_V (T_s - T_\infty) L^3}{\nu^2}$$
$ Gr $
=
Grashof number (dimensionless)
$ L $
=
characteristic length (meter)
$ T_\infty $
=
$ \nu $
=

WEBER_NUMBER ¤

WEBER_NUMBER = Dimensionless('weber_number')

Dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids.

Wikidata: Q947531
Symbol: $We$
$$We = \frac{\rho u^2 L}{\sigma}$$
$ We $
=
Weber number (dimensionless)
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
characteristic length (meter)
$ \sigma $
=

MACH_NUMBER ¤

MACH_NUMBER = Dimensionless('mach_number')
Wikidata: Q160669
Symbols: $M$, $Ma$
$$Ma = \frac{u}{c}$$
$ Ma $
=
Mach number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ c $
=

KNUDSEN_NUMBER ¤

KNUDSEN_NUMBER = Dimensionless('knudsen_number')
Wikidata: Q898463
Symbol: $Kn$
$$Kn = \frac{\lambda}{L}$$
$ Kn $
=
Knudsen number (dimensionless)
$ \lambda $
=
$ L $
=
characteristic length (meter)

STROUHAL_NUMBER ¤

STROUHAL_NUMBER = Dimensionless('strouhal_number')

Dimensionless number describing oscillating flow mechanisms.

Wikidata: Q646627
Symbols: $Sr$, $Sh$
$$Sr = \frac{f L}{u}$$
$ Sr $
=
Strouhal number (dimensionless)
$ f $
=
$ L $
=
characteristic length (meter)
$ u $
=
Speed (meter · second⁻¹)

BAGNOLD_NUMBER ¤

BAGNOLD_NUMBER = Dimensionless('bagnold_number')

For a body moving in a fluid the quotient of drag and gravitational force.

Wikidata: Q101584387
Symbol: $Bg$
$$Bg = \frac{c_D \rho u^2}{L g \rho_b}$$
$ Bg $
=
Bagnold number (dimensionless)
$ c_D $
=
Drag coefficient (dimensionless)
$ \rho $
=
Density of fluid (kilogram · meter⁻³)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
characteristiclength (meter)
$ \rho_b $
=
Density of body (kilogram · meter⁻³)

BAGNOLD_NUMBER_SOLID_PARTICLES ¤

BAGNOLD_NUMBER_SOLID_PARTICLES = Dimensionless(
    "bagnold_number_solid_particles"
)
Wikidata: Q2472733
Symbol: $Ba$
$$Ba = \frac{\rho_s d^2 \dot{\gamma}}{\eta} \left(\frac{1}{f_s^{1/2}-1}\right)$$
$ Ba $
=
$ \rho_s $
=
Density of particles (kilogram · meter⁻³)
$ d $
=
Diameter of particles (meter)
$ \dot{\gamma} $
=
$ \eta $
=
$ f_s $
=
Volume fraction of solid particles (meter³ · meter⁻³)

LIFT_COEFFICIENT ¤

LIFT_COEFFICIENT = Dimensionless('lift_coefficient')

Coefficient that relates the lift generated by a lifting body to other parameters.

Wikidata: Q760106
Symbols: $c_L$, $c_l$ (for 2D flows), $c_A$
$$c_L = \frac{L}{qS} = \frac{L}{\frac{1}{2}\rho u^2 S}$$
$ c_L $
=
Lift coefficient (dimensionless)
$ L $
=
Lift of wing (newton)
$ \rho $
=
Density of fluid (kilogram · meter⁻³)
$ u $
=
Speed of body relative to fluid (meter · second⁻¹)
$ S $
=
Planform area (meter²)

THRUST_COEFFICIENT ¤

THRUST_COEFFICIENT = Dimensionless('thrust_coefficient')

Characteristic number of a propeller.

Wikidata: Q102040931
Symbols: $c_t$, $c_\tau$
Assumptions: propellers$$c_t = \frac{T}{\rho n^2 D^4}$$
$ c_t $
=
Thrust coefficient (dimensionless)
$ T $
=
Thrust of propeller (newton)
$ \rho $
=
Density of fluid (kilogram · meter⁻³)
$ D $
=
tip diameter of propeller (meter)

DEAN_NUMBER ¤

DEAN_NUMBER = Dimensionless('dean_number')

Characteristic number of flows in curved pipes.

Wikidata: Q674181
Symbol: $Dn$
$$Dn = \frac{2ur}{\nu}\sqrt{\frac{r}{R}}$$
$ Dn $
=
Dean number (dimensionless)
$ u $
=
$ r $
=
Radius of pipe (meter)
$ \nu $
=

BEJAN_NUMBER ¤

BEJAN_NUMBER = Dimensionless('bejan_number')

Dimensionless pressure drop along a channel.

Wikidata: Q50814076
Symbol: $Be$
$$Be = \frac{\Delta p L^2}{\eta \nu} = \frac{\rho \Delta p L^2}{\eta^2}$$
$ Be $
=
Bejan number (dimensionless)
$ \Delta p $
=
$ L $
=
characteristic length (meter)
$ \eta $
=
$ \nu $
=
$ \rho $
=

LAGRANGE_NUMBER ¤

LAGRANGE_NUMBER = Dimensionless('lagrange_number')

Characteristic number for a fluid in a pipe.

Wikidata: Q102066153
Symbol: $Lg$
$$Lg = \frac{L \Delta p}{\mu u}$$
$ Lg $
=
Lagrange number (dimensionless)
$ L $
=
characteristic length (meter)
$ \Delta p $
=
$ u $
=
Speed (meter · second⁻¹)

BINGHAM_NUMBER ¤

BINGHAM_NUMBER = Dimensionless('bingham_number')
Wikidata: Q3343011
Symbol: $Bm$
$$Bm = \frac{\tau D}{\mu u}$$
$ Bm $
=
Bingham number (dimensionless)
$ \tau $
=
$ D $
=
characteristicdiameter (meter)
$ u $
=
Speed (meter · second⁻¹)

HEDSTROM_NUMBER ¤

HEDSTROM_NUMBER = Dimensionless('hedstrom_number')
Wikidata: Q3343027
Symbol: $He$
$$He = \frac{\tau_0 D^2 \rho}{\mu^2}$$
$ He $
=
Hedstrom number (dimensionless)
$ \tau_0 $
=
Shear stress at flow limit (pascal)
$ D $
=
characteristicdiameter (meter)
$ \rho $
=

BODENSTEIN_NUMBER ¤

BODENSTEIN_NUMBER = Dimensionless('bodenstein_number')
Wikidata: Q370662
Symbols: $Bo$, $Bd$
$$Bo = \frac{uL}{D_{ax}} = Pe^* = Re \cdot Sc$$
$ Bo $
=
Bodenstein number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
Length of the reactor (meter)
$ D_{ax} $
=
$ Pe^* $
=
Peclet number for mass transfer (dimensionless)
$ Re $
=
Reynolds number (dimensionless)
$ Sc $
=
Schmidt number (dimensionless)

ROSSBY_NUMBER ¤

ROSSBY_NUMBER = Dimensionless('rossby_number')

Ratio of inertial force to Coriolis force.

Wikidata: Q676622
Symbol: $Ro$
$$Ro = \frac{u}{2 L \omega_E \sin\phi}$$
$ Ro $
=
Rossby number (dimensionless)
$ u $
=
Speed of motion (meter · second⁻¹)
$ L $
=
characteristic length (meter)
$ \omega_E $
=
Angular velocity ccw of Earth's rotation (radian · second⁻¹)
$ \phi $
=
Latitude (dimensionless)

EKMAN_NUMBER ¤

EKMAN_NUMBER = Dimensionless('ekman_number')

Dimensionless ratio of viscous to Coriolis forces.

Wikidata: Q1323330
Symbol: $Ek$
$$Ek = \frac{\nu}{2 L^2 \omega_E \sin\phi}$$
$ Ek $
=
Ekman number (dimensionless)
$ \nu $
=
$ L $
=
characteristic length (meter)
$ \omega_E $
=
Angular velocity ccw of Earth's rotation (radian · second⁻¹)
$ \phi $
=
Latitude (dimensionless)

ELASTICITY_NUMBER ¤

ELASTICITY_NUMBER = Dimensionless('elasticity_number')

Characteristic number of viscoelastic flows.

Wikidata: Q102310770
Symbol: $El$
$$El = \frac{t_r \nu}{r^2}$$
$ El $
=
Elasticity number (dimensionless)
$ t_r $
=
$ \nu $
=
$ r $
=
Radius of the pipe (meter)

DARCY_FRICTION_FACTOR ¤

DARCY_FRICTION_FACTOR = Dimensionless(
    "darcy_friction_factor"
)

Characteristic number for the pressure drop in a pipe due to friction in a laminar or turbulent flow.

Wikidata: Q1253446
Symbol: $f_D$
$$f_D = \frac{2\Delta p D}{\rho u^2 L}$$
$ f_D $
=
Darcy friction factor (dimensionless)
$ \Delta p $
=
Pressure drop due to friction (pascal)
$ \rho $
=
$ u $
=
average speed of fluid flow in pipe (meter · second⁻¹)
$ D $
=
Diameter of pipe (meter)
$ L $
=
Length of pipe (meter)

FANNING_NUMBER ¤

FANNING_NUMBER = Dimensionless('fanning_friction_factor')

Characteristic number for the friction on the wall of a fluid in a pipe.

Wikidata: Q2004420
Symbols: $f_n$, $f$
$$f_n = \frac{\tau_w}{\frac{1}{2}\rho u^2}$$
$ f_n $
=
Fanning number (dimensionless)
$ \tau_w $
=
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)

GOERTLER_NUMBER ¤

GOERTLER_NUMBER = Dimensionless('goertler_number')
Wikidata: Q102723670
Symbol: $Go$
$$Go = \frac{u l_b}{\nu} \sqrt{\frac{l_b}{r_c}}$$
$ Go $
=
Goertler number (dimensionless)
$ u $
=
external speed (meter · second⁻¹)
$ \nu $
=

HAGEN_NUMBER ¤

HAGEN_NUMBER = Dimensionless('hagen_number')

Dimensionless number used in forced flow calculations.

Wikidata: Q1568363
Symbols: $Hg$, $Hg$
$$Hg = -\frac{1}{\rho}\frac{dp}{dx}\frac{L^3}{\nu^2}$$
$ Hg $
=
Hagen number (dimensionless)
$ \rho $
=
$ \frac{dp}{dx} $
=
$ L $
=
$ \nu $
=
Assumptions: free convection$$Hg = Gr$$
$ Hg $
=
Hagen number (dimensionless)
$ Gr $
=
Grashof number (dimensionless)

LAVAL_NUMBER ¤

LAVAL_NUMBER = Dimensionless('laval_number')
Wikidata: Q1808802
Symbol: $La$
$$La = \frac{u}{\sqrt{\frac{R_s T 2\gamma}{\gamma+1}}}$$
$ La $
=
Laval number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ R_s $
=
$ T $
=
$ \gamma $
=
Heat capacity ratio (dimensionless)

POISEUILLE_NUMBER ¤

POISEUILLE_NUMBER = Dimensionless('poiseuille_number')

Characteristic number of flows in a pipe.

Wikidata: Q2513351
Symbol: $Poi$
$$Poi = -\frac{\Delta p D^2}{L \mu u}$$
$ Poi $
=
Poiseuille number (dimensionless)
$ \Delta p $
=
$ L $
=
Length of pipe (meter)
$ D $
=
Diameter of pipe (meter)
$ \mu $
=
$ u $
=
Speed of fluid flow in pipe (meter · second⁻¹)

POWER_NUMBER ¤

POWER_NUMBER = Dimensionless('power_number')

Characteristic number for the power of an agitator.

Wikidata: Q1462550
Symbol: $N_p$
$$N_p = \frac{P}{\rho n^3 D^5}$$
$ N_p $
=
Power number (dimensionless)
$ P $
=
Active power of stirrer (watt)
$ \rho $
=
Density of fluid (kilogram · meter⁻³)
$ D $
=
Diameter of stirrer (meter)

RICHARDSON_NUMBER ¤

RICHARDSON_NUMBER = Dimensionless('richardson_number')

Characteristic number of a falling body proportional to the quotient of potential and kinetic energy.

Wikidata: Q961847
Symbol: $Ri$
$$Ri = \frac{gh}{u^2}$$
$ Ri $
=
Richardson number (dimensionless)
$ h $
=
$ u $
=
Speed (meter · second⁻¹)

REECH_NUMBER ¤

REECH_NUMBER = Dimensionless('reech_number')

Characteristic number of an object moving in water.

Wikidata: Q25401602
Symbol: $Ree$
$$Ree = \frac{\sqrt{gl}}{u}$$
$ Ree $
=
Reech number (dimensionless)
$ l $
=
$ u $
=
Speed of object relative to water (meter · second⁻¹)

BOUSSINESQ_NUMBER ¤

BOUSSINESQ_NUMBER = Dimensionless('boussinesq_number')

See: https://en.wikipedia.org/wiki/Boussinesq_approximation_(buoyancy)

Symbol: $Bs$
$$Bs = \frac{v}{\sqrt{2gl}}$$
$ Bs $
=
Boussinesq number (dimensionless)
$ v $
=
Speed of object relative to water (meter · second⁻¹)
$ l $
=

STOKES_NUMBER ¤

STOKES_NUMBER = Dimensionless('stokes_number')

Characteristic number for particles in a fluid or plasma.

Wikidata: Q1545546
Symbol: $Stk$
$$Stk = \frac{t_r}{t_a}$$
$ Stk $
=
Stokes number (dimensionless)
$ t_r $
=
Relaxation time of particles (second)
$ t_a $
=
Duration of fluid to alter its velocity (second)

STOKES_NUMBER_VIBRATING_PARTICLES ¤

STOKES_NUMBER_VIBRATING_PARTICLES = Dimensionless(
    "stokes_number_vibrating_particles"
)

Characteristic number for particles vibrating in a fluid or plasma.

Wikidata: Q103820258
Symbol: $Stk_1$
$$Stk_1 = \frac{\nu}{D^2 f}$$
$ Stk_1 $
=
$ \nu $
=
Kinematic viscosity of fluid or plasma (meter² · second⁻¹)
$ D $
=
Diameter of particle (meter)
$ f $
=
Frequency of particle vibrations (hertz)

STOKES_NUMBER_ROTAMETER ¤

STOKES_NUMBER_ROTAMETER = Dimensionless(
    "stokes_number_rotameter"
)

Characteristic number for the calibration of rotameters.

Wikidata: Q103896907
Symbol: $Stk_2$
$$Stk_2 = \frac{r^3 g m (\rho_b - \rho)}{\eta^2}$$
$ Stk_2 $
=
Stokes number rotameter (dimensionless)
$ r $
=
Ratio of pipe and float radii
$ m $
=
Mass of the floating body (kilogram)
$ \rho_b $
=
Density of the floating body (kilogram · meter⁻³)
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ \eta $
=
Dynamic viscosity of the fluid (pascal · second)

STOKES_NUMBER_GRAVITY ¤

STOKES_NUMBER_GRAVITY = Dimensionless(
    "stokes_number_gravity"
)

Characteristic number for particles falling in a fluid.

Wikidata: Q103982174
Symbol: $Stk_3$
$$Stk_3 = \frac{v \nu}{g L^2}$$
$ Stk_3 $
=
Stokes number gravity (dimensionless)
$ v $
=
Speed of particles (meter · second⁻¹)
$ \nu $
=
Kinematic viscosity of the fluid (meter² · second⁻¹)
$ L $
=
Length of fall (meter)

STOKES_NUMBER_DRAG ¤

STOKES_NUMBER_DRAG = Dimensionless('stokes_number_drag')

Characteristic number for particles dragged in a fluid.

Wikidata: Q103982443
Symbol: $Stk_4$
$$Stk_4 = \frac{F_D}{\mu u L}$$
$ Stk_4 $
=
Stokes number drag (dimensionless)
$ F_D $
=
$ \mu $
=
Dynamic viscosity of the fluid (pascal · second)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
characteristic length (meter)

LAPLACE_NUMBER ¤

LAPLACE_NUMBER = Dimensionless('laplace_number')

Characteristic number in fluid dynamics.

Wikidata: Q179814
Symbol: $La$
$$La = \frac{\sigma \rho L}{\mu^2}$$
$ La $
=
Laplace number (dimensionless)
$ \sigma $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ L $
=
characteristic length (meter)
$ \mu $
=
Dynamic viscosity of the fluid (pascal · second)

BLAKE_NUMBER ¤

BLAKE_NUMBER = Dimensionless('blake_number')

Nondimensional number showing the ratio of inertial force to viscous force.

Wikidata: Q3343009
Symbol: $Bl$
$$Bl = \frac{u \rho L}{\mu(1-\varepsilon)}$$
$ Bl $
=
Blake number (dimensionless)
$ u $
=
Speed of the fluid (meter · second⁻¹)
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ L $
=
characteristic length (meter)
$ \mu $
=
Dynamic viscosity of the fluid (pascal · second)
$ \varepsilon $
=
Porosity (dimensionless)

SOMMERFELD_NUMBER ¤

SOMMERFELD_NUMBER = Dimensionless('sommerfeld_number')

Characteristic number of hydrodynamic bearings.

Wikidata: Q6047623
Symbol: $So$
$$So = \frac{\mu n}{p} \left(\frac{r}{c}\right)^2$$
$ So $
=
Sommerfeld number (dimensionless)
$ \mu $
=
Dynamic viscosity of lubricant (pascal · second)
$ r $
=
Radius of the shaft (meter)
$ c $
=
radial distance between rotating shaft and annulus (meter)

TAYLOR_NUMBER ¤

TAYLOR_NUMBER = Dimensionless('taylor_number')

Characteristic number of a shaft rotating in a fluid.

Wikidata: Q1935046
Symbol: $Ta$
$$Ta = \frac{4 \omega^2 L^4}{\nu^2}$$
$ Ta $
=
Taylor number (dimensionless)
$ \omega $
=
Angular velocity ccw of rotation (radian · second⁻¹)
$ L $
=
Length perpendicular to the rotation axis (meter)
$ \nu $
=

GALILEI_NUMBER ¤

GALILEI_NUMBER = Dimensionless('galilei_number')

Characteristic number of fluid films flowing over walls.

Wikidata: Q1492101
Symbol: $Ga$
$$Ga = \frac{g L^3}{\nu^2}$$
$ Ga $
=
Galilei number (dimensionless)
$ L $
=
characteristic length (meter)
$ \nu $
=
Kinematic viscosity of the fluid (meter² · second⁻¹)

WOMERSLEY_NUMBER ¤

WOMERSLEY_NUMBER = Dimensionless('womersley_number')

Characteristic number of pulsating flows in a pipe.

Wikidata: Q2066584
Symbols: $\alpha$, $Wo$
$$\alpha = R \sqrt{\frac{\omega}{\nu}}$$
$ \alpha $
=
Womersley number (dimensionless)
$ R $
=
Radius of the pipe (meter)
$ \omega $
=
Angular frequency of oscillations (radian · second⁻¹)
$ \nu $
=

FOURIER_NUMBER ¤

FOURIER_NUMBER = Dimensionless('fourier_number')
Wikidata: Q901793
Symbol: $Fo$
$$Fo = \frac{\alpha t}{L^2}$$
$ Fo $
=
Fourier number (dimensionless)
$ \alpha $
=
$ t $
=
$ L $
=
characteristic length (meter)

PECLET_NUMBER ¤

PECLET_NUMBER = Dimensionless('peclet_number')

Dimensionless ratio used in fluid dynamics.

Wikidata: Q899769
Symbol: $Pe$
$$Pe = \frac{uL}{\alpha}$$
$ Pe $
=
Peclet number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
Length in the direction of heat transfer (meter)
$ \alpha $
=

RAYLEIGH_NUMBER ¤

RAYLEIGH_NUMBER = Dimensionless('rayleigh_number')

Characteristic number of heat transport in fluids.

Wikidata: Q898249
Symbol: $Ra$
$$Ra_L = \frac{L^3 g \alpha_V (T_s - T_r)}{\nu \alpha}$$
$ Ra $
=
Rayleigh number (dimensionless)
$ L $
=
characteristic length (meter)
$ \alpha_V $
=
$ \nu $
=
Kinematic viscosity of the fluid (meter² · second⁻¹)
$ \alpha $
=
Thermal diffusivity of the fluid (meter² · second⁻¹)

FROUDE_NUMBER_HEAT_TRANSFER ¤

FROUDE_NUMBER_HEAT_TRANSFER = Dimensionless(
    "froude_number_heat_transfer"
)
Wikidata: Q104175687
Symbol: $Fr^*$
$$Fr^* = \frac{g L^3}{\alpha^2}$$
$ Fr^* $
=
$ L $
=
characteristic length (meter)
$ \alpha $
=

NUSSELT_NUMBER ¤

NUSSELT_NUMBER = Dimensionless('nusselt_number')
Wikidata: Q898280
Symbol: $Nu$
$$Nu_L = \frac{hL}{\kappa}$$
$ Nu $
=
Nusselt number (dimensionless)
$ h $
=
$ L $
=
Length of the body in direction of heat flow (meter)
$ \kappa $
=

BIOT_NUMBER ¤

BIOT_NUMBER = Dimensionless('biot_number')

Characteristic number for heat transfer by conduction into a body.

Wikidata: Q864844
Symbol: $Bi$
$$Bi = \frac{hL_C}{\kappa}$$
$ Bi $
=
Biot number (dimensionless)
$ h $
=
$ L_c $
=
characteristic length (meter)
$ \kappa $
=
Thermal conductivity of the body (watt · meter⁻¹ · kelvin⁻¹)

STANTON_NUMBER ¤

STANTON_NUMBER = Dimensionless('stanton_number')
Wikidata: Q901845
Symbol: $St$
$$St = \frac{h}{\rho u c_p}$$
$ St $
=
Stanton number (dimensionless)
$ h $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ u $
=
Speed (meter · second⁻¹)
$ c_p $
=
Specific heat capacity p of the fluid (joule · kilogram⁻¹ · kelvin⁻¹)

J_FACTOR_HEAT_TRANSFER ¤

J_FACTOR_HEAT_TRANSFER = Dimensionless(
    "j_factor_heat_transfer"
)

Characteristic number for the relation between heat and mass transfer in a fluid.

Wikidata: Q1107639
Symbol: $j$
$$j = \frac{h}{c_p \rho u} \left(\frac{c_p \eta}{\kappa}\right)^{2/3} = \frac{h}{c_p G} Pr^{2/3}$$
$ j $
=
J factor heat transfer (dimensionless)
$ h $
=
$ c_p $
=
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)
$ \eta $
=
$ \kappa $
=
$ G $
=
Mass flux (kilogram · meter⁻² · second⁻¹)

BEJAN_NUMBER_HEAT_TRANSFER ¤

BEJAN_NUMBER_HEAT_TRANSFER = Dimensionless(
    "bejan_number_heat_transfer"
)
Wikidata: Q104209862
Symbol: $Be$
$$Be = \frac{\Delta p L^2}{\eta \alpha}$$
$ Be $
=
$ \Delta p $
=
Pressure drop along a pipe (pascal)
$ L $
=
Length of the pipe (meter)
$ \eta $
=
$ \alpha $
=

BEJAN_NUMBER_ENTROPY ¤

BEJAN_NUMBER_ENTROPY = Dimensionless("bejan_number_entropy")

In thermodynamics, the ratio of heat transfer irreversibility to total irreversibility.

Wikidata: Q3110607
Symbol: $Be$
$$Be = \frac{S(\Delta T)}{S(\Delta T) + S(\Delta p)}$$
$ Be $
=
Bejan number entropy (dimensionless)
$ S $
=
Entropy generation (joule · kelvin⁻¹)
$ \Delta T $
=
$ \Delta p $
=

STEFAN_NUMBER ¤

STEFAN_NUMBER = Dimensionless('stefan_number')

Characteristic number for the relation between heat and latent heat of a binary mixture undergoing a phase transition.

Wikidata: Q909876
Symbol: $Ste$
$$Ste = \frac{c_p \Delta T}{L}$$
$ Ste $
=
Stefan number (dimensionless)
$ c_p $
=
$ \Delta T $
=
Temperature difference between the phases (kelvin)
$ L $
=

BRINKMAN_NUMBER ¤

BRINKMAN_NUMBER = Dimensionless('brinkman_number')

Characteristic number of a fluid for the relation between heat produced by viscosity and heat received from outside by conduction.

Wikidata: Q917504
Symbol: $Br$
$$Br = \frac{\eta u^2}{\kappa \Delta T}$$
$ Br $
=
Brinkman number (dimensionless)
$ \eta $
=
$ u $
=
characteristic speed (meter · second⁻¹)
$ \kappa $
=
$ \Delta T $
=
Temperature difference between wall and bulk fluid (kelvin)

CLAUSIUS_NUMBER ¤

CLAUSIUS_NUMBER = Dimensionless('clausius_number')

Characteristic number of a fluid for the relation between energy transfer by momentum and by thermal conduction.

Wikidata: Q3343019
Symbol: $Cl$
$$Cl = \frac{u^3 L \rho}{\lambda \Delta T}$$
$ Cl $
=
Clausius number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
Length of the path of energy transfer (meter)
$ \rho $
=
$ \lambda $
=
$ \Delta T $
=
Temperature difference along length L (kelvin)

ECKERT_NUMBER ¤

ECKERT_NUMBER = Dimensionless('eckert_number')
Wikidata: Q905744
Symbol: $Ec$
$$Ec = \frac{u^2}{c_p \Delta T}$$
$ Ec $
=
Eckert number (dimensionless)
$ u $
=
characteristic speed (meter · second⁻¹)
$ c_p $
=
Specific heat capacity p of the flow (joule · kilogram⁻¹ · kelvin⁻¹)
$ \Delta T $
=
Temperature difference due to dissipation (kelvin)

GRAETZ_NUMBER ¤

GRAETZ_NUMBER = Dimensionless('graetz_number')
Wikidata: Q903886
Symbols: $Gz$, $Gz$
$$Gz = \frac{u D^2}{\alpha l}$$
$ Gz $
=
Graetz number (dimensionless)
$ u $
=
Speed of the fluid (meter · second⁻¹)
$ D $
=
Diameter of the pipe (meter)
$ \alpha $
=
Thermal diffusivity of the fluid (meter² · second⁻¹)
$ l $
=
Length of the pipe (meter)
$$Gz = \frac{D}{l} Re Pr$$
$ Gz $
=
Graetz number (dimensionless)
$ D $
=
Diameter of the pipe (meter)
$ l $
=
Length of the pipe (meter)
$ Re $
=
Reynolds number (dimensionless)
$ Pr $
=
Prandtl number (dimensionless)

HEAT_TRANSFER_NUMBER ¤

HEAT_TRANSFER_NUMBER = Dimensionless("heat_transfer_number")
Wikidata: Q104379084
Symbol: $K_Q$
$$K_Q = \frac{\Phi}{u^3 L^2 \rho}$$
$ K_Q $
=
Heat transfer number (dimensionless)
$ \Phi $
=
$ u $
=
characteristic speed (meter · second⁻¹)
$ L $
=
characteristic length (meter)
$ \rho $
=

POMERANTSEV_NUMBER ¤

POMERANTSEV_NUMBER = Dimensionless('pomerantsev_number')

Characteristic number for the relation between heat generation and conduction in a body.

Wikidata: Q104379986
Symbol: $Po$
$$Po = \frac{Q_m L^2}{\lambda \Delta T}$$
$ Po $
=
Pomerantsev number (dimensionless)
$ L $
=
characteristic length (meter)
$ \lambda $
=
$ \Delta T $
=
Temperature difference between medium and initial body temperature (kelvin)

BOLTZMANN_NUMBER ¤

BOLTZMANN_NUMBER = Dimensionless('boltzmann_number')

Characteristic number for the relation between convective heat and radiant heat of a fluid.

Wikidata: Q3343051
Symbol: $Bo$
$$Bo = \frac{\rho_0 u c_p}{\varepsilon \sigma T_0^3}$$
$ Bo $
=
Boltzmann number (dimensionless)
$ \rho_0 $
=
Density of the fluid (kilogram · meter⁻³)
$ u $
=
Speed of the fluid (meter · second⁻¹)
$ c_p $
=
$ \varepsilon $
=
Emissivity (dimensionless)
$ \sigma $
=
$ T_0 $
=

STARK_NUMBER ¤

STARK_NUMBER = Dimensionless('stark_number')

Characteristic number for the relation between radiant and conductive heat of a body.

Wikidata: Q104407222
Symbol: $Sk$
$$Sk = \frac{\varepsilon \sigma T^3 L}{\lambda}$$
$ Sk $
=
Stark number (dimensionless)
$ \varepsilon $
=
Emissivity of the surface (dimensionless)
$ \sigma $
=
$ T $
=
$ L $
=
characteristic length (meter)
$ \lambda $
=

FOURIER_NUMBER_MASS_TRANSFER ¤

FOURIER_NUMBER_MASS_TRANSFER = Dimensionless(
    "fourier_number_mass_transfer"
)
Wikidata: Q104542186
Symbol: $Fo^*$
$$Fo^* = \frac{D t}{L^2}$$
$ Fo^* $
=
$ D $
=
$ t $
=
Duration of observation (second)
$ L $
=
Length of transfer (meter)

PECLET_NUMBER_MASS_TRANSFER ¤

PECLET_NUMBER_MASS_TRANSFER = Dimensionless(
    "peclet_number_mass_transfer"
)
Wikidata: Q104542217
Symbol: $Pe^*$
$$Pe^* = \frac{Lu}{D}$$
$ Pe^* $
=
$ L $
=
characteristic length (meter)
$ u $
=
Speed (meter · second⁻¹)
$ D $
=

GRASHOF_NUMBER_MASS_TRANSFER ¤

GRASHOF_NUMBER_MASS_TRANSFER = Dimensionless(
    "grashof_number_mass_transfer"
)

Characteristic number for the relation between buoyancy and viscosity in convection of fluids.

Wikidata: Q104578635
Symbol: $Gr^*$
$$Gr^* = \frac{g \left(-\frac{1}{\rho}\left(\frac{\partial\rho}{\partial x}\right)_{T,p}\right) \Delta x L^3}{\nu^2}$$
$ Gr^* $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ x $
=
Mole fraction (dimensionless)
$ \Delta x $
=
Difference of mole fraction along length l (dimensionless)
$ L $
=
characteristic length (meter)
$ \nu $
=

NUSSELT_NUMBER_MASS_TRANSFER ¤

NUSSELT_NUMBER_MASS_TRANSFER = Dimensionless(
    "nusselt_number_mass_transfer"
)

Characteristic number for mass transfer at the boundary of a fluid.

Wikidata: Q104598868
Symbol: $Nu^*$
$$Nu^* = \frac{k' L}{\rho D}$$
$ Nu^* $
=
$ k' $
=
$ L $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ D $
=

STANTON_NUMBER_MASS_TRANSFER ¤

STANTON_NUMBER_MASS_TRANSFER = Dimensionless(
    "stanton_number_mass_transfer"
)
Wikidata: Q104627433
Symbol: $St^*$
$$St^* = \frac{k'}{\rho u}$$
$ St^* $
=
$ k' $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ u $
=
Speed (meter · second⁻¹)

GRAETZ_NUMBER_MASS_TRANSFER ¤

GRAETZ_NUMBER_MASS_TRANSFER = Dimensionless(
    "graetz_number_mass_transfer"
)
Wikidata: Q104638971
Symbol: $Gz^*$
$$Gz^* = \frac{u d}{L D} = \frac{d}{L} Pe^*$$
$ Gz^* $
=
$ u $
=
Speed of the fluid (meter · second⁻¹)
$ d $
=
Diameter of the pipe (meter)
$ L $
=
Length of the pipe (meter)
$ D $
=
$ Pe^* $
=

J_FACTOR_MASS_TRANSFER ¤

J_FACTOR_MASS_TRANSFER = Dimensionless(
    "j_factor_mass_transfer"
)

Characteristic number for the relation between mass transport perpendicular and parallel to the surface of an open fluid flow.

Wikidata: Q104654483
Symbol: $j^*$
$$j^* = \frac{k_c}{u} \left(\frac{\nu}{D}\right)^{2/3} = \frac{k_c}{u} Sc^{2/3}$$
$ j^* $
=
J factor mass transfer (dimensionless)
$ k_c $
=
$ u $
=
Speed (meter · second⁻¹)
$ \nu $
=
$ D $
=
$ Sc $
=
Schmidt number (dimensionless)

ATWOOD_NUMBER ¤

ATWOOD_NUMBER = Dimensionless('atwood_number')
Wikidata: Q2373823
Symbol: $At$
$$At = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$
$ At $
=
Atwood number (dimensionless)
$ \rho_1 $
=
Density of heavier fluid (kilogram · meter⁻³)
$ \rho_2 $
=
Density of lighter fluid (kilogram · meter⁻³)

BIOT_NUMBER_MASS_TRANSFER ¤

BIOT_NUMBER_MASS_TRANSFER = Dimensionless(
    "biot_number_mass_transfer"
)

Characteristic number for the relation between mass transfer rate at the interface and in the interior of a body.

Wikidata: Q104713187
Symbol: $Bi^*$
$$Bi^* = \frac{k L}{D_\text{int}}$$
$ Bi^* $
=
Biot number mass transfer (dimensionless)
$ L $
=
$ D_\text{int} $
=
Diffusion coefficient at the interface (meter² · second⁻¹)

MORTON_NUMBER ¤

MORTON_NUMBER = Dimensionless('morton_number')

Characteristic number for bubbles or drops in a liquid or gas, respectively, under the influence of gravitational an viscous forces.

Wikidata: Q1346119
Symbol: $Mo$
$$Mo = \frac{g \eta^4}{\rho \sigma^3} \left(\frac{\rho_b}{\rho} - 1\right)$$
$ Mo $
=
Morton number (dimensionless)
$ \eta $
=
Dynamic viscosity of surrounding fluid (pascal · second)
$ \rho $
=
Density of surrounding fluid (kilogram · meter⁻³)
$ \sigma $
=
Surface tension of the interface (newton · meter⁻¹)
$ \rho_b $
=
Density of the bubble or drop (kilogram · meter⁻³)

BOND_NUMBER ¤

BOND_NUMBER = Dimensionless('bond_number')

Characteristic number in fluid dynamics.

Wikidata: Q892173
Symbol: $Bo$
$$Bo = \frac{a \rho L^2}{\sigma} \left(\frac{\rho_b}{\rho} - 1\right)$$
$ Bo $
=
Bond number (dimensionless)
$ a $
=
Acceleration of the body (meter · second⁻²)
$ \rho $
=
Density of the medium (kilogram · meter⁻³)
$ L $
=
characteristic length (meter)
$ \sigma $
=
Surface tension of the interface (newton · meter⁻¹)
$ \rho_b $
=
Density of the bubble or drop (kilogram · meter⁻³)

ARCHIMEDES_NUMBER ¤

ARCHIMEDES_NUMBER = Dimensionless('archimedes_number')

Used to determine the motion of fluids due to density differences.

Wikidata: Q634307
Symbol: $Ar$
$$Ar = \frac{g L^3}{\nu^2} \left(\frac{\rho_b}{\rho} - 1\right)$$
$ Ar $
=
Archimedes number (dimensionless)
$ L $
=
characteristic length of the body (meter)
$ \nu $
=
Kinematic viscosity of the fluid (meter² · second⁻¹)
$ \rho_b $
=
Density of the body (kilogram · meter⁻³)
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)

EXPANSION_NUMBER ¤

EXPANSION_NUMBER = Dimensionless('expansion_number')

Characteristic number for the relation of buoyancy and internal force for gas bubbles rising in a liquid.

Wikidata: Q104774294
Symbol: $Ex$
$$Ex = \frac{g d}{u^2} \left(1 - \frac{\rho_b}{\rho}\right)$$
$ Ex $
=
Expansion number (dimensionless)
$ d $
=
Diameter of bubbles (meter)
$ u $
=
Speed of bubbles (meter · second⁻¹)
$ \rho_b $
=
Density of bubbles (kilogram · meter⁻³)
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)

MARANGONI_NUMBER ¤

MARANGONI_NUMBER = Dimensionless('marangoni_number')

Concept in fluid dynamics.

Wikidata: Q1861030
Symbol: $Mg$
$$Mg = \left(-\frac{d\gamma}{dT}\right) \frac{L\Delta T}{\eta \alpha}$$
$ Mg $
=
Marangoni number (dimensionless)
$ \gamma $
=
Surface tension of the film (newton · meter⁻¹)
$ T $
=
$ L $
=
Thickness of the film (meter)
$ \Delta T $
=
Temperature difference across the film (kelvin)
$ \eta $
=
Dynamic viscosity of the liquid (pascal · second)
$ \alpha $
=
Thermal diffusivity of the liquid (meter² · second⁻¹)

LOCKHART_MARTINELLI_PARAMETER ¤

LOCKHART_MARTINELLI_PARAMETER = Dimensionless(
    "lockhart_martinelli_parameter"
)

Characteristic number used in two-phase flow calculations.

Wikidata: Q29211
Symbol: $Lp$
$$Lp = \frac{\dot{m}_l}{\dot{m}_g}\sqrt{\frac{\rho_g}{\rho_l}}$$
$ Lp $
=
$ \dot{m}_l $
=
Mass flow rate of liquid phase (kilogram · second⁻¹)
$ \dot{m}_g $
=
Mass flow rate of gas phase (kilogram · second⁻¹)
$ \rho_g $
=
Density of gas phase (kilogram · meter⁻³)
$ \rho_l $
=
Density of liquid phase (kilogram · meter⁻³)

BEJAN_NUMBER_MASS_TRANSFER ¤

BEJAN_NUMBER_MASS_TRANSFER = Dimensionless(
    "bejan_number_mass_transfer"
)

Characteristic number for viscous flows in pipes.

Wikidata: Q104785959
Symbol: $Be^*$
$$Be^* = \frac{\Delta p L^2}{\mu D}$$
$ Be^* $
=
$ \Delta p $
=
Pressure drop along a pipe or channel (pascal)
$ L $
=
Length of the channel (meter)
$ \mu $
=
Dynamic viscosity of the fluid (pascal · second)
$ D $
=

CAVITATION_NUMBER ¤

CAVITATION_NUMBER = Dimensionless('cavitation_number')

Concept in fluid mechanics.

Wikidata: Q1737262
Symbol: $Ca$
$$Ca = \frac{p - p_v}{\rho u^2 / 2}$$
$ Ca $
=
Cavitation number (dimensionless)
$ p_v $
=
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ u $
=
Speed of the flow (meter · second⁻¹)

ABSORPTION_NUMBER ¤

ABSORPTION_NUMBER = Dimensionless('absorption_number')

Characteristic number for the absorption of gas at a wet surface.

Wikidata: Q3343003
Symbol: $Ab$
$$Ab = k \sqrt{\frac{L D_\text{film}}{D_\text{diff} q_v}}$$
$ Ab $
=
Absorption number (dimensionless)
$ L $
=
Length of wetted surface (meter)
$ D_\text{film} $
=
Thickness of liquid film (meter)
$ D_\text{diff} $
=
$ q_v $
=
Volume flow rate per wetted perimeter (meter³ · second⁻¹)

CAPILLARY_NUMBER ¤

CAPILLARY_NUMBER = Dimensionless('capillary_number')

Quotient of gravitational and capillary forces for fluids in narrow pipes.

Wikidata: Q104815730
Symbol: $Ca$
$$Ca = \frac{d^2 \rho g}{\sigma}$$
$ Ca $
=
Capillary number (dimensionless)
$ d $
=
Diameter of the pipe (meter)
$ \rho $
=
Density of the fluid (kilogram · meter⁻³)
$ \sigma $
=
Surface tension of the fluid (newton · meter⁻¹)

DYNAMIC_CAPILLARY_NUMBER ¤

DYNAMIC_CAPILLARY_NUMBER = Dimensionless(
    "dynamic_capillary_number"
)

Ratio of viscous drag forces to surface tension in fluids.

Wikidata: Q785542
Symbol: $Ca^*$
$$Ca^* = \frac{\mu u}{\sigma}$$
$ Ca^* $
=
Dynamic capillary number (dimensionless)
$ \mu $
=
Dynamic viscosity of the fluid (pascal · second)
$ u $
=
characteristic speed (meter · second⁻¹)
$ \sigma $
=
Surface tension of the fluid (newton · meter⁻¹)

PRANDTL_NUMBER ¤

PRANDTL_NUMBER = Dimensionless('prandtl_number')
Wikidata: Q815306
Symbol: $Pr$
$$Pr = \frac{\nu}{\alpha}$$
$ Pr $
=
Prandtl number (dimensionless)
$ \nu $
=
$ \alpha $
=

SCHMIDT_NUMBER ¤

SCHMIDT_NUMBER = Dimensionless('schmidt_number')
Wikidata: Q581997
Symbol: $Sc$
$$Sc = \frac{\nu}{D}$$
$ Sc $
=
Schmidt number (dimensionless)
$ \nu $
=
$ D $
=

LEWIS_NUMBER ¤

LEWIS_NUMBER = Dimensionless('lewis_number')
Wikidata: Q901840
Symbol: $Le$
$$Le = \frac{\alpha}{D}$$
$ Le $
=
Lewis number (dimensionless)
$ \alpha $
=
$ D $
=

OHNESORGE_NUMBER ¤

OHNESORGE_NUMBER = Dimensionless('ohnesorge_number')

Characteristic number that relates the viscous forces to inertial and surface tension forces.

Wikidata: Q1302335
Symbol: $Oh$
$$Oh = \frac{\mu}{\sqrt{\sigma \rho L}}$$
$ Oh $
=
Ohnesorge number (dimensionless)
$ \sigma $
=
$ \rho $
=
$ L $
=
characteristic length (meter)

CAUCHY_NUMBER ¤

CAUCHY_NUMBER = Dimensionless('cauchy_number')

Characteristic number in continuum mechanics used in the study of compressible flows.

Wikidata: Q957179
Symbol: $Cy$
$$Cy = \frac{\rho u^2}{K}$$
$ Cy $
=
Cauchy number (dimensionless)
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)
$ K $
=

HOOKE_NUMBER ¤

HOOKE_NUMBER = Dimensionless('hooke_number')

Characteristic number for elastic fluids.

Wikidata: Q104864070
Symbol: $Ho_2$
$$Ho_2 = \frac{\rho u^2}{E}$$
$ Ho_2 $
=
Hooke number (dimensionless)
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)

WEISSENBERG_NUMBER ¤

WEISSENBERG_NUMBER = Dimensionless('weissenberg_number')
Wikidata: Q1753014
Symbol: $Wi$
$$Wi = \dot{\gamma} t_r$$
$ Wi $
=
Weissenberg number (dimensionless)
$ \dot{\gamma} $
=
$ t_r $
=

DEBORAH_NUMBER ¤

DEBORAH_NUMBER = Dimensionless('deborah_number')
Wikidata: Q1138045
Symbol: $De$
$$De = \frac{t_c}{t_p}$$
$ De $
=
Deborah number (dimensionless)
$ t_c $
=

LORENTZ_NUMBER ¤

LORENTZ_NUMBER = Dimensionless('lorentz_number')
Wikidata: Q104901522
Symbol: $Lo$
$$Lo = \frac{\sigma (\Delta U)^2}{\kappa \Delta T}$$
$ Lo $
=
Lorentz number (dimensionless)
$ \sigma $
=
$ \Delta U $
=
$ \kappa $
=
$ \Delta T $
=

COMPRESSIBILITY_NUMBER ¤

COMPRESSIBILITY_NUMBER = Dimensionless(
    "compressibility_number"
)

Correction factor which describes the deviation of a real gas from ideal gas behavior.

Wikidata: Q736895
Symbol: $Z$
$$Z = \frac{p}{\rho R_s T}$$
$ Z $
=
Compressibility number (dimensionless)
$ p $
=
$ \rho $
=
$ R_s $
=
$ T $
=

REYNOLDS_MAGNETIC_NUMBER ¤

REYNOLDS_MAGNETIC_NUMBER = Dimensionless(
    "reynolds_magnetic_number"
)

Characteristic number of an electrically conducting fluid.

Wikidata: Q1852720
Symbol: $Rm$
$$Rm = u L \mu \sigma$$
$ Rm $
=
Reynolds magnetic number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
$ \mu $
=
$ \sigma $
=

BATCHELOR_NUMBER ¤

BATCHELOR_NUMBER = Dimensionless('batchelor_number')

Characteristic number of an electrically conducting liquid.

Wikidata: Q105061807
Symbol: $Bt$
$$Bt = \frac{u L \sigma \mu}{\varepsilon_r \mu_r}$$
$ Bt $
=
Batchelor number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
$ \sigma $
=
$ \mu $
=
$ \varepsilon_r $
=
Relative permittivity (dimensionless)
$ \mu_r $
=
Relative permeability (dimensionless)

NUSSELT_ELECTRIC_NUMBER ¤

NUSSELT_ELECTRIC_NUMBER = Dimensionless(
    "nusselt_electric_number"
)

Characteristic number for the relation between convective and diffusive ion current.

Wikidata: Q105070806
Symbol: $Ne$
$$Ne = \frac{uL}{D^*}$$
$ Ne $
=
Nusselt electric number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ L $
=
$ D^* $
=

ALFVEN_NUMBER ¤

ALFVEN_NUMBER = Dimensionless('alfven_number')

Characteristic number for the relation between plasma speed and Alfvén wave speed.

Wikidata: Q3342997
Symbol: $Al$
$$Al = \frac{u}{B / \sqrt{\rho \mu}}$$
$ Al $
=
Alfven number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ \rho $
=
$ \mu $
=

HARTMANN_NUMBER ¤

HARTMANN_NUMBER = Dimensionless('hartmann_number')

Characteristic number for electrically conducting fluids.

Wikidata: Q1587280
Symbol: $Ha$
$$Ha = B L \sqrt{\frac{\sigma}{\mu}}$$
$ Ha $
=
Hartmann number (dimensionless)
$ L $
=
$ \sigma $
=

COWLING_NUMBER ¤

COWLING_NUMBER = Dimensionless('cowling_number')

Characteristic number for the relation of magnetic to kinematic energy in a plasma.

Wikidata: Q3343018
Symbol: $Co$
$$Co = \frac{B^2}{\mu \rho u^2}$$
$ Co $
=
Cowling number (dimensionless)
$ \mu $
=
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)

STUART_ELECTRICAL_NUMBER ¤

STUART_ELECTRICAL_NUMBER = Dimensionless(
    "stuart_electrical_number"
)

Characteristic number for the relation of electric to kinematic energy in a plasma.

Wikidata: Q105093880
Symbol: $Se$
$$Se = \frac{\varepsilon E^2}{\rho u^2}$$
$ Se $
=
Stuart electrical number (dimensionless)
$ \varepsilon $
=
$ E $
=
$ \rho $
=
$ u $
=
Speed (meter · second⁻¹)

MAGNETIC_PRESSURE_NUMBER ¤

MAGNETIC_PRESSURE_NUMBER = Dimensionless(
    "magnetic_pressure_number"
)

Quotient of gas and magnetic pressure in a gas or plasma.

Wikidata: Q105102313
Symbol: $N_{mp}$
$$N_{mp} = \frac{2\mu p}{B^2}$$
$ N_{mp} $
=
Magnetic pressure number (dimensionless)
$ \mu $
=
$ p $
=

CHANDRASEKHAR_NUMBER ¤

CHANDRASEKHAR_NUMBER = Dimensionless("chandrasekhar_number")

Dimensionless quantity used in magnetic convection to represent ratio of the Lorentz force to the viscosity.

Wikidata: Q4516333
Symbol: $Q$
$$Q = \frac{(B L)^2 \sigma}{\rho \nu}$$
$ Q $
=
Chandrasekhar number (dimensionless)
$ L $
=
$ \sigma $
=
$ \rho $
=
$ \nu $
=

PRANDTL_MAGNETIC_NUMBER ¤

PRANDTL_MAGNETIC_NUMBER = Dimensionless(
    "prandtl_magnetic_number"
)
Wikidata: Q2510107
Symbol: $Pr_m$
$$Pr_m = \nu \sigma \mu$$
$ Pr_m $
=
Prandtl magnetic number (dimensionless)
$ \nu $
=
$ \sigma $
=
$ \mu $
=

ROBERTS_NUMBER ¤

ROBERTS_NUMBER = Dimensionless('roberts_number')
Wikidata: Q105190387
Symbol: $Ro$
$$Ro = \alpha \sigma \mu$$
$ Ro $
=
Roberts number (dimensionless)
$ \alpha $
=
$ \sigma $
=
$ \mu $
=

STUART_NUMBER ¤

STUART_NUMBER = Dimensionless('stuart_number')

Quotient of magnetic and inertial force in an electrically conducting fluid.

Wikidata: Q1386798
Symbol: $Stw$
$$Stw = \frac{B^2 L \sigma}{u \rho}$$
$ Stw $
=
Stuart number (dimensionless)
$ L $
=
$ \sigma $
=
$ u $
=
Speed (meter · second⁻¹)
$ \rho $
=

MAGNETIC_NUMBER ¤

MAGNETIC_NUMBER = Dimensionless('magnetic_number')

Quotient of magnetic and viscous forces in an electrically conducting fluid.

Wikidata: Q105221904
Symbol: $N_{mg}$
$$N_{mg} = B \sqrt{\frac{L \sigma}{\mu u}}$$
$ N_{mg} $
=
Magnetic number (dimensionless)
$ L $
=
$ \sigma $
=
$ u $
=
Speed (meter · second⁻¹)

ELECTRIC_FIELD_PARAMETER ¤

ELECTRIC_FIELD_PARAMETER = Dimensionless(
    "electric_field_parameter"
)

Quotient of Coulomb and Lorentz force on moving, electrically charged particles.

Wikidata: Q105221927
Symbol: $Ef$
$$Ef = \frac{E}{u B}$$
$ Ef $
=
Electric field parameter (dimensionless)
$ E $
=
$ u $
=
Speed (meter · second⁻¹)

HALL_NUMBER ¤

HALL_NUMBER = Dimensionless('hall_number')

Quotient of gyro and collision frequency in a plasma.

Wikidata: Q105266119
Symbol: $H_c$
$$H_c = \frac{\omega_c \lambda}{2\pi u}$$
$ H_c $
=
Hall number (dimensionless)
$ \omega_c $
=
$ \lambda $
=
$ u $
=
Speed (meter · second⁻¹)

LUNDQUIST_NUMBER ¤

LUNDQUIST_NUMBER = Dimensionless('lundquist_number')

Quotient of Alfvén and magneto-dynamic speed in a plasma.

Wikidata: Q2066377
Symbol: $Lu$
$$Lu = B L \sigma \sqrt{\frac{\mu}{\rho}}$$
$ Lu $
=
Lundquist number (dimensionless)
$ L $
=
$ \sigma $
=
$ \mu $
=
$ \rho $
=

JOULE_MAGNETIC_NUMBER ¤

JOULE_MAGNETIC_NUMBER = Dimensionless(
    "joule_magnetic_number"
)

Quotient of Joule heat and magnetic field energy in a plasma.

Wikidata: Q3343031
Symbol: $Jo_m$
$$Jo_m = \frac{2 \rho \mu c_p \Delta T}{B^2}$$
$ Jo_m $
=
Joule magnetic number (dimensionless)
$ \rho $
=
$ \mu $
=
$ c_p $
=
$ \Delta T $
=

GRASHOF_MAGNETIC_NUMBER ¤

GRASHOF_MAGNETIC_NUMBER = Dimensionless(
    "grashof_magnetic_number"
)

Characteristic number for the heat transfer by thermo-magnetic convection of a paramagnetic fluid under the influence of gravity.

Wikidata: Q105356815
Symbol: $Gr_m$
$$Gr_m = \frac{4\pi \sigma_e \mu_e g \alpha_V (T_s - T_\infty) L^3}{\nu}$$
$ Gr_m $
=
Grashof magnetic number (dimensionless)
$ \sigma_e $
=
$ \mu_e $
=
$ T_\infty $
=
$ L $
=
$ \nu $
=

NAZE_NUMBER ¤

NAZE_NUMBER = Dimensionless('naze_number')

Quotient of Alfvén wave speed and sound speed in a plasma.

Wikidata: Q105385595
Symbol: $Na$
$$Na = \frac{B}{c \sqrt{\rho \mu}}$$
$ Na $
=
Naze number (dimensionless)
$ c $
=
$ \rho $
=
$ \mu $
=

REYNOLDS_ELECTRIC_NUMBER ¤

REYNOLDS_ELECTRIC_NUMBER = Dimensionless(
    "reynolds_electric_number"
)

Quotient of the speed of an electrically conducting fluid and drift speed of its charged particles.

Wikidata: Q105395962
Symbol: $Re_e$
$$Re_e = \frac{u \varepsilon_e}{L \rho_e \mu}$$
$ Re_e $
=
Reynolds electric number (dimensionless)
$ u $
=
Speed (meter · second⁻¹)
$ \varepsilon_e $
=
$ L $
=
$ \rho_e $
=
$ \mu $
=
Mobility (meter² · volt⁻¹ · second⁻¹)

AMPERE_NUMBER ¤

AMPERE_NUMBER = Dimensionless('ampere_number')

Characteristic number for the relation between electric surface current and magnetic field strength in an electrically conducting liquid.

Wikidata: Q105404651
Symbol: $Am$
$$Am = \frac{I_A}{L H}$$
$ Am $
=
Ampere number (dimensionless)
$ I_A $
=
electric surface current (ampere)
$ L $
=

ARRHENIUS_NUMBER ¤

ARRHENIUS_NUMBER = Dimensionless('arrhenius_number')
Wikidata: Q105415606
Symbol: $\alpha$
$$\alpha = \frac{E_0}{RT}$$
$ \alpha $
=
Arrhenius number (dimensionless)
$ E_0 $
=
$ R $
=
Molar gas constant (joule · mole⁻¹ · kelvin⁻¹)
$ T $
=

LANDAU_GINZBURG_NUMBER ¤

LANDAU_GINZBURG_NUMBER = Dimensionless(
    "landau_ginzburg_number"
)

Characteristic number of a superconductor.

Wikidata: Q105421034
Symbol: $\kappa$
$$\kappa = \frac{\lambda_L}{\xi \sqrt{2}}$$
$ \kappa $
=
Landau ginzburg number (dimensionless)
$ \lambda_L $
=
$ \xi $
=

LATTICE_VIBRATION_FREQUENCY ¤

LATTICE_VIBRATION_FREQUENCY = QtyKind(
    HZ, ("lattice_vibration",)
)

NUMBER_OF_ONE_ELECTRON_STATES_PER_VOLUME ¤

NUMBER_OF_ONE_ELECTRON_STATES_PER_VOLUME = QtyKind(
    M**-3, ("one_electron_states",)
)

MOBILITY_OF_ELECTRONS ¤

MOBILITY_OF_ELECTRONS = MOBILITY['electron']

MOBILITY_OF_HOLES ¤

MOBILITY_OF_HOLES = MOBILITY['hole']

LIFETIME ¤

LIFETIME = DURATION['lifetime']

LATTICE_VECTOR ¤

LATTICE_VECTOR = QtyKind(M, ('lattice', VECTOR))

Translation vector which maps a crystal lattice onto itself.

Wikidata: Q105435234
Symbol: $\boldsymbol{R}$

FUNDAMENTAL_LATTICE_VECTORS ¤

FUNDAMENTAL_LATTICE_VECTORS = LATTICE_VECTOR['fundamental']

Fundamental translation vector for a crystal lattice.

Wikidata: Q105451063
Symbols: $\boldsymbol{a}_1$, $\boldsymbol{a}_2$, $\boldsymbol{a}_3$

ANGULAR_RECIPROCAL_LATTICE_VECTOR ¤

ANGULAR_RECIPROCAL_LATTICE_VECTOR = QtyKind(
    M**-1, ("reciprocal_lattice", VECTOR, "angular")
)

Vector whose scalar product with a fundamental lattice vector is an integral multiple of two Pi.

Wikidata: Q105475278
Symbol: $\boldsymbol{G}$

FUNDAMENTAL_RECIPROCAL_LATTICE_VECTORS ¤

FUNDAMENTAL_RECIPROCAL_LATTICE_VECTORS = (
    ANGULAR_RECIPROCAL_LATTICE_VECTOR["fundamental"]
)

Fundamental translation vector for a reciprocal lattice.

Wikidata: Q105475399
Symbols: $\boldsymbol{b}_1$, $\boldsymbol{b}_2$, $\boldsymbol{b}_3$

LATTICE_PLANE_SPACING ¤

LATTICE_PLANE_SPACING = QtyKind(
    M, ("lattice_plane_spacing",)
)

Distance between adjacent lattice planes.

Wikidata: Q105488046
Symbol: $d$

BRAGG_ANGLE ¤

BRAGG_ANGLE = ANGLE['bragg']

In X-ray crystallography, angle between lattice plane and scattered ray.

Wikidata: Q105488118
Symbol: $\theta$
$$2d\sin\theta = n\lambda$$
$ \theta $
=
Bragg angle (dimensionless)
$ n $
=
Order of reflection
$ \lambda $
=

SHORT_RANGE_ORDER_PARAMETER ¤

SHORT_RANGE_ORDER_PARAMETER = Dimensionless(
    "short_range_order_parameter"
)
Wikidata: Q105495979
Symbols: $r$, $\sigma$

LONG_RANGE_ORDER_PARAMETER ¤

LONG_RANGE_ORDER_PARAMETER = Dimensionless(
    "long_range_order_parameter"
)
Wikidata: Q105496124
Symbols: $R$, $s$

ATOMIC_SCATTERING_FACTOR ¤

ATOMIC_SCATTERING_FACTOR = Dimensionless(
    "atomic_scattering_factor"
)

Measure of the scattering amplitude of a wave by an isolated atom.

Wikidata: Q837866
Symbol: $f$
$$f = \frac{E_a}{E_e}$$
$ f $
=
Atomic scattering factor (dimensionless)
$ E_a $
=
Radiation amplitude scattered by atom
$ E_e $
=
Radiation amplitude scattered by a single electron

STRUCTURE_FACTOR ¤

STRUCTURE_FACTOR = Dimensionless('structure_factor')

Mathematical description in crystallography.

Wikidata: Q900684
Symbol: $F(h,k,l)$
$$F(h,k,l) = \sum_{n=1}^{N} f_n \exp[2\pi i (hx_n + ky_n + lz_n)]$$
$ F(h,k,l) $
=
Structure factor (dimensionless)
$ N $
=
Total number of atoms in unit cell
$ f_n $
=
Atomic scattering factor (dimensionless)
$ h,k,l $
=
Miller indices
$ x,y,z $
=
Fractional coordinates
$ n $
=
atom

BURGERS_VECTOR ¤

BURGERS_VECTOR = QtyKind(M, ('burgers', VECTOR))

Vector characterising a dislocation in a crystal lattice.

Wikidata: Q623093
Symbol: $\boldsymbol{b}$

PARTICLE_POSITION_VECTOR ¤

PARTICLE_POSITION_VECTOR = POSITION['particle']

Position vector of a particle.

Wikidata: Q105533324
Symbols: $\boldsymbol{r}$, $\boldsymbol{R}$

EQUILIBRIUM_POSITION_VECTOR ¤

EQUILIBRIUM_POSITION_VECTOR = POSITION['equilibrium']

In condensed matter physics, position vector of an atom or ion in equilibrium.

Wikidata: Q105533477
Symbol: $\boldsymbol{R}_0$

DISPLACEMENT_VECTOR_LATTICE ¤

DISPLACEMENT_VECTOR_LATTICE = DISPLACEMENT['lattice']

In condensed matter physics, position vector of an atom or ion relative to its equilibrium position.

Wikidata: Q105533558
Symbol: $\boldsymbol{u}$
$$\boldsymbol{u} = \boldsymbol{R} - \boldsymbol{R}_0$$
$ \boldsymbol{u} $
=
$ \boldsymbol{R} $
=
$ \boldsymbol{R}_0 $
=

DEBYE_WALLER_FACTOR ¤

DEBYE_WALLER_FACTOR = Dimensionless('debye_waller_factor')

Is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion.

Wikidata: Q902587
Symbols: $D$, $B$

ANGULAR_WAVENUMBER_LATTICE ¤

ANGULAR_WAVENUMBER_LATTICE = ANGULAR_WAVENUMBER['lattice']
Wikidata: Q105542089
Symbols: $k$, $q$

FERMI_ANGULAR_WAVENUMBER ¤

FERMI_ANGULAR_WAVENUMBER = ANGULAR_WAVENUMBER_LATTICE[
    "fermi"
]

Angular wavenumber of an electron in a state on the Fermi surface.

Wikidata: Q105554303
Symbol: $k_F$

DEBYE_ANGULAR_WAVENUMBER ¤

DEBYE_ANGULAR_WAVENUMBER = ANGULAR_WAVENUMBER_LATTICE[
    "debye"
]
Wikidata: Q105554370
Symbol: $q_D$

DEBYE_ANGULAR_FREQUENCY ¤

DEBYE_ANGULAR_FREQUENCY = ANGULAR_FREQUENCY['debye']
Wikidata: Q105580986
Symbol: $\omega_D$

DEBYE_TEMPERATURE ¤

DEBYE_TEMPERATURE = QtyKind(K, ('debye',))
Wikidata: Q3517821
Symbol: $\Theta_D$
$$\Theta_D = \frac{\hbar\omega_D}{k}$$
$ \Theta_D $
=
$ \hbar $
=
$ \omega_D $
=
$ k $
=

DENSITY_OF_VIBRATIONAL_STATES ¤

DENSITY_OF_VIBRATIONAL_STATES = QtyKind(
    S * M**-3, ("density_of_vibrational_states",)
)

Quantity in condensed matter physics.

Wikidata: Q105637294
Symbol: $g$
$$g(\omega) = \frac{dn(\omega)}{d\omega}$$
$ n $
=
Number of vibrational modes per volume with angular frequency less than $\omega$ (meter³)
$ \omega $
=

THERMODYNAMIC_GRUNEISEN_PARAMETER ¤

THERMODYNAMIC_GRUNEISEN_PARAMETER = Dimensionless(
    "thermodynamic_gruneisen_parameter"
)
Wikidata: Q105658620
Symbol: $\gamma_G$
$$\gamma_G = \frac{\alpha_V}{\kappa_T c_V \rho}$$
$ \gamma_G $
=
$ \kappa_T $
=
$ c_V $
=
$ \rho $
=

GRUNEISEN_PARAMETER ¤

GRUNEISEN_PARAMETER = Dimensionless('gruneisen_parameter')

Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice.

Wikidata: Q444656
Symbol: $\gamma$
$$\gamma = -\frac{\partial\ln\omega}{\partial\ln V}$$
$ \gamma $
=
Gruneisen parameter (dimensionless)
$ V $
=

MEAN_FREE_PATH_OF_PHONONS ¤

MEAN_FREE_PATH_OF_PHONONS = MEAN_FREE_PATH['phonon']
Wikidata: Q105672255
Symbol: $l_p$

MEAN_FREE_PATH_OF_ELECTRONS ¤

MEAN_FREE_PATH_OF_ELECTRONS = MEAN_FREE_PATH['electron']
Wikidata: Q105672307
Symbol: $l_e$

ENERGY_DENSITY_OF_STATES ¤

ENERGY_DENSITY_OF_STATES = QtyKind(
    J**-1 * M**-3, ("energy_density_of_states",)
)

Quantity in condensed matter physics.

Wikidata: Q105687031
Symbol: $n_E$
$$n_E(E) = \frac{dn(E)}{dE}$$

RESIDUAL_RESISTIVITY ¤

RESIDUAL_RESISTIVITY = RESISTIVITY['residual']
Wikidata: Q25098876
Symbol: $\rho_0$

LORENZ_COEFFICIENT ¤

LORENZ_COEFFICIENT = QtyKind(
    V**2 * K**-2, ("lorenz_coefficient",)
)

Coefficient of proportionality in the Wiedemann-Franz law.

Wikidata: Q105728754
Symbol: $L$
$$L = \frac{\kappa}{\sigma T}$$
$ L $
=
$ \kappa $
=
$ \sigma $
=
$ T $
=

HALL_COEFFICIENT ¤

HALL_COEFFICIENT = QtyKind(
    M**3 * C**-1, ("hall_coefficient",)
)
Wikidata: Q997439
Symbol: $R_H$
$$\boldsymbol{E} = \rho\boldsymbol{J} + R_H(\boldsymbol{B}\times\boldsymbol{J})$$
$ \boldsymbol{E} $
=
$ \rho $
=
$ \boldsymbol{J} $
=
$ R_H $
=
$ \boldsymbol{B} $
=

THERMOELECTRIC_VOLTAGE ¤

THERMOELECTRIC_VOLTAGE = VOLTAGE['thermoelectric']

Voltage caused by the thermoelectric effect.

Wikidata: Q105761637
Symbol: $E_{ab}$

SEEBECK_COEFFICIENT ¤

SEEBECK_COEFFICIENT = QtyKind(
    V * K**-1, ("seebeck_coefficient",)
)
Wikidata: Q1091448
Symbol: $S_{ab}$
$$S_{ab} = \frac{dE_{ab}}{dT}$$
$ S_{ab} $
=
$ E_{ab} $
=
$ T $
=

PELTIER_COEFFICIENT ¤

PELTIER_COEFFICIENT = QtyKind(V, ('peltier_coefficient',))
Wikidata: Q105801003
Symbol: $\Pi_{ab}$

THOMSON_COEFFICIENT ¤

THOMSON_COEFFICIENT = QtyKind(
    V * K**-1, ("thomson_coefficient",)
)
Wikidata: Q105801233
Symbol: $\mu$

WORK_FUNCTION ¤

WORK_FUNCTION = ENERGY['work_function']
Wikidata: Q783800
Symbol: $\Phi$

IONIZATION_ENERGY ¤

IONIZATION_ENERGY = ENERGY['ionization']

Minimum amount of energy required to remove an electron from an atom or molecule in the gaseous state.

Wikidata: Q483769
Symbol: $E_i$

ELECTRON_AFFINITY ¤

ELECTRON_AFFINITY = ENERGY['electron_affinity']

In condensed matter physics, energy difference between an electron at rest at infinity and the lowest level of the conduction band in an insulator or semiconductor.

Wikidata: Q105846486
Symbol: $\chi$

RICHARDSON_CONSTANT ¤

RICHARDSON_CONSTANT = QtyKind(
    A * M**-2 * K**-2, ("richardson_constant",)
)
Wikidata: Q105883079
Symbol: $A$
$$J = A T^2 \exp\left(-\frac{\Phi}{kT}\right)$$
$ J $
=
Thermionic emission current density (ampere · meter⁻²)
$ A $
=
$ T $
=
$ \Phi $
=
$ k $
=

FERMI_ENERGY ¤

FERMI_ENERGY = ENERGY['fermi']

Concept in quantum mechanics referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature.

Wikidata: Q431335
Symbol: $E_F$

GAP_ENERGY ¤

GAP_ENERGY = ENERGY['gap']

Smallest energy difference between neighboring conduction bands separated by a forbidden band.

Wikidata: Q103982939
Symbol: $E_g$

FERMI_TEMPERATURE ¤

FERMI_TEMPERATURE = QtyKind(K, ('fermi',))
Wikidata: Q105942324
Symbol: $T_F$
$$T_F = \frac{E_F}{k}$$
$ E_F $
=
$ k $
=

ELECTRON_DENSITY ¤

ELECTRON_DENSITY = NUMBER_DENSITY['electron']

In condensed matter physics, number of electrons in the conduction band per volume.

Wikidata: Q105971077
Symbol: $n$

HOLE_DENSITY ¤

HOLE_DENSITY = NUMBER_DENSITY['hole']

In condensed matter physics, number of holes in the valence band per volume.

Wikidata: Q105971101
Symbol: $p$

INTRINSIC_CARRIER_DENSITY ¤

INTRINSIC_CARRIER_DENSITY = NUMBER_DENSITY[
    "intrinsic_carrier"
]
Wikidata: Q1303188
Symbol: $n_i$
$$n_i = \sqrt{np}$$
$ n_i $
=
$ n $
=
$ p $
=

DONOR_DENSITY ¤

DONOR_DENSITY = NUMBER_DENSITY['donor']

Number of donor levels per volume.

Wikidata: Q105979886
Symbol: $n_d$

ACCEPTOR_DENSITY ¤

ACCEPTOR_DENSITY = NUMBER_DENSITY['acceptor']

Number of acceptor levels per volume.

Wikidata: Q105979968
Symbol: $n_a$

EFFECTIVE_MASS ¤

EFFECTIVE_MASS = MASS['effective']

The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution.

Wikidata: Q1064434
Symbol: $m^*$
$$m^* = \hbar^2 \left(\frac{d^2\varepsilon}{dk^2}\right)^{-1}$$
$ m^* $
=
$ \hbar $
=
$ \varepsilon $
=
Energy of an electron (joule)

MOBILITY_RATIO ¤

MOBILITY_RATIO = Dimensionless('mobility_ratio')
Wikidata: Q106010255
Symbol: $b$
$$b = \frac{\mu_n}{\mu_p}$$
$ b $
=
Mobility ratio (dimensionless)
$ \mu_n $
=
Mobility of electrons (meter² · volt⁻¹ · second⁻¹)
$ \mu_p $
=
Mobility of holes (meter² · volt⁻¹ · second⁻¹)

RELAXATION_TIME_LATTICE ¤

RELAXATION_TIME_LATTICE = DURATION['relaxation_lattice']

In condensed matter physics, time constant for interactions (scattering, annihilation, etc.) of charge carriers or quasiparticles (phonons, etc.).

Wikidata: Q106041085
Symbol: $\tau$

CARRIER_LIFETIME ¤

CARRIER_LIFETIME = DURATION['carrier_lifetime']

Average time taken for free semiconductor electrons or holes to recombine; whichever is the minority carrier.

Wikidata: Q5046374
Symbols: $\tau$, $\tau_n$, $\tau_p$

DIFFUSION_LENGTH ¤

DIFFUSION_LENGTH = LENGTH['diffusion']

In condensed matter physics, the square root of the product of diffusion coefficient and lifetime.

Wikidata: Q106097176
Symbol: $L$
$$L = \sqrt{D\tau}$$
$ D $
=
$ \tau $
=

EXCHANGE_INTEGRAL ¤

EXCHANGE_INTEGRAL = ENERGY['exchange_integral']
Wikidata: Q10882959
Symbols: $K$, $J$

CURIE_TEMPERATURE ¤

CURIE_TEMPERATURE = TEMPERATURE['curie']

Temperature above which certain materials lose their permanent magnetic properties.

Wikidata: Q191073
Symbol: $T_C$

NEEL_TEMPERATURE ¤

NEEL_TEMPERATURE = TEMPERATURE['neel']

Critical temperature of an antiferromagnet.

Wikidata: Q830311
Symbol: $T_N$

SUPERCONDUCTION_TRANSITION_TEMPERATURE ¤

SUPERCONDUCTION_TRANSITION_TEMPERATURE = TEMPERATURE[
    "superconduction_transition"
]

Critical temperature of a superconductor.

Wikidata: Q106103037
Symbol: $T_c$

THERMODYNAMIC_CRITICAL_MAGNETIC_FLUX_DENSITY ¤

THERMODYNAMIC_CRITICAL_MAGNETIC_FLUX_DENSITY = (
    MAGNETIC_FLUX_DENSITY["critical", "thermodynamic"]
)
Wikidata: Q106103200
Symbol: $B_c$
$$B_c = \sqrt{\frac{2\mu_0(G_n - G_s)}{V}}$$
$ \mu_0 $
=
$ G_n $
=
Gibbs energy (normal conductor) (joule)
$ G_s $
=
Gibbs energy (superconductor) (joule)
$ V $
=

LOWER_CRITICAL_MAGNETIC_FLUX_DENSITY ¤

LOWER_CRITICAL_MAGNETIC_FLUX_DENSITY = (
    MAGNETIC_FLUX_DENSITY["critical", "lower"]
)
Wikidata: Q106127355
Symbol: $B_{c1}$

UPPER_CRITICAL_MAGNETIC_FLUX_DENSITY ¤

UPPER_CRITICAL_MAGNETIC_FLUX_DENSITY = (
    MAGNETIC_FLUX_DENSITY["critical", "upper"]
)
Wikidata: Q106127634
Symbol: $B_{c2}$

SUPERCONDUCTOR_ENERGY_GAP ¤

SUPERCONDUCTOR_ENERGY_GAP = ENERGY['superconductor_gap']

Width of the forbidden energy band in a superconductor.

Wikidata: Q106127898
Symbol: $\Delta$

LONDON_PENETRATION_DEPTH ¤

LONDON_PENETRATION_DEPTH = LENGTH[
    "london_penetration_depth"
]

Distance to which a magnetic field penetrates into a superconductor.

Wikidata: Q3277853
Symbols: $\lambda_L$, $\lambda_L$
$$B(x) = B(0) \exp\left(-\frac{x}{\lambda_L}\right)$$

COHERENCE_LENGTH ¤

COHERENCE_LENGTH = LENGTH['coherence']

Characteristic length in a superconductor.

Wikidata: Q7643174
Symbol: $\xi$

ERLANG ¤

ERLANG = Dimensionless('erlang')

Erlang, a dimensionless unit for telephone traffic intensity.

TRAFFIC_INTENSITY ¤

TRAFFIC_INTENSITY = Dimensionless('traffic_intensity')
Wikidata: Q1421101
Symbol: $A$

TRAFFIC_OFFERED_INTENSITY ¤

TRAFFIC_OFFERED_INTENSITY = Dimensionless(
    "traffic_offered_intensity"
)
Wikidata: Q106213722
Symbol: $A_0$

TRAFFIC_CARRIED_INTENSITY ¤

TRAFFIC_CARRIED_INTENSITY = Dimensionless(
    "traffic_carried_intensity"
)
Wikidata: Q106213953
Symbol: $Y$

MEAN_QUEUE_LENGTH ¤

MEAN_QUEUE_LENGTH = Dimensionless('mean_queue_length')

Time average of the length of a queue.

Wikidata: Q106237523
Symbols: $L$, $\Omega$

LOSS_PROBABILITY ¤

LOSS_PROBABILITY = Dimensionless('loss_probability')

Probability for losing a call attempt.

Wikidata: Q106237587
Symbol: $B$

WAITING_PROBABILITY ¤

WAITING_PROBABILITY = Dimensionless('waiting_probability')

Probability for waiting for a resource.

Wikidata: Q106237674
Symbol: $W$

CALL_INTENSITY ¤

CALL_INTENSITY = QtyKind(HZ, ('call_intensity',))
Wikidata: Q106237881
Symbol: $\lambda$

COMPLETED_CALL_INTENSITY ¤

COMPLETED_CALL_INTENSITY = QtyKind(
    HZ, ("completed_call_intensity",)
)

Completed calls per time.

Wikidata: Q106237945
Symbol: $\mu$

STORAGE_CAPACITY ¤

STORAGE_CAPACITY = Dimensionless('storage_capacity')
Wikidata: Q2308599
Symbol: $M$

BIT ¤

BIT = Dimensionless('bit')

BYTE ¤

BYTE = (8 * BIT).alias('byte', allow_prefix=True)

OCTET ¤

OCTET = (8 * BIT).alias('octet', allow_prefix=True)

EQUIVALENT_BINARY_STORAGE_CAPACITY ¤

EQUIVALENT_BINARY_STORAGE_CAPACITY = QtyKind(
    BIT, ("equivalent_binary_storage_capacity",)
)
Wikidata: Q106247681
Symbol: $M_e$
$$M_e = \log_2 n$$
$ M_e $
=
$ n $
=
Number of possible states

TRANSFER_RATE ¤

TRANSFER_RATE = QtyKind(S ** -1, ('transfer_rate',))
Wikidata: Q495092
Symbols: $r$, $\nu$

PERIOD_OF_DATA_ELEMENTS ¤

PERIOD_OF_DATA_ELEMENTS = PERIOD['data_elements']
Wikidata: Q106268500
Symbol: $T$
$$T = 1/r$$

BIT_RATE ¤

BIT_RATE = QtyKind(BIT * S ** -1, ('bit_rate',))

Information transmission rate expressed in bits per second.

Wikidata: Q194158
Symbol: $r_\text{bit}$

BIT_PERIOD ¤

BIT_PERIOD = PERIOD['bit']
Wikidata: Q106282183
Symbol: $T_\text{bit}$
$$T_\text{bit} = 1/r_\text{bit}$$
$ T_\text{bit} $
=
$ r_\text{bit} $
=
Bit rate (bit · second⁻¹)

EQUIVALENT_BIT_RATE ¤

EQUIVALENT_BIT_RATE = QtyKind(
    BIT * S**-1, ("equivalent_bit_rate",)
)
Wikidata: Q5227354
Symbol: $r_e$

BAUD ¤

BAUD = (S**-1)["modulation_rate"].alias(
    "baud", allow_prefix=True
)

Baud, a unit of modulation rate (symbol rate).

MODULATION_RATE ¤

MODULATION_RATE = QtyKind(BAUD)

Rate of modulation of a digital signal.

Wikidata: Q428083
Symbol: $r_m$

QUANTIZING_DISTORTION ¤

QUANTIZING_DISTORTION = QtyKind(
    W, ("quantizing_distortion",)
)
Wikidata: Q106321197
Symbol: $T_Q$

CARRIER_POWER ¤

CARRIER_POWER = POWER['carrier']
Wikidata: Q25381657
Symbol: $P_c$

SIGNAL_ENERGY_PER_BINARY_DIGIT ¤

SIGNAL_ENERGY_PER_BINARY_DIGIT = ENERGY[
    "signal_per_binary_digit"
]
Wikidata: Q106344792
Symbol: $E_\text{bit}$
$$E_\text{bit} = P_c T_\text{bit}$$
$ E_\text{bit} $
=
$ P_c $
=
$ T_\text{bit} $
=

ERROR_PROBABILITY ¤

ERROR_PROBABILITY = Dimensionless('error_probability')

Probability for incorrectly receiving a data element.

Wikidata: Q106344844
Symbol: $P$

HAMMING_DISTANCE ¤

HAMMING_DISTANCE = Dimensionless('hamming_distance')

Number of bits that differ between two strings.

Wikidata: Q272172
Symbol: $d_h$

CLOCK_FREQUENCY ¤

CLOCK_FREQUENCY = FREQUENCY['clock']

Frequency at which CPU chip or core is operating.

Wikidata: Q911691
Symbol: $f_{cl}$

DECISION_CONTENT ¤

DECISION_CONTENT = Dimensionless('decision_content')
Wikidata: Q106378242
Symbol: $D_a$
$$D_a = \log_a n$$
$ D_a $
=
Decision content (dimensionless)
$ a $
=
Number of possibilities at each decision
$ n $
=
Number of events

PROBABILITY_RATIO ¤

PROBABILITY_RATIO = Dimensionless('probability_ratio')

SHANNON ¤

SHANNON = Log(PROBABILITY_RATIO, base=2).alias('shannon')

Logarithmic level of information (base 2).

HARTLEY ¤

HARTLEY = Log(PROBABILITY_RATIO, base=10).alias('hartley')

Logarithmic level of information (base 10), also known as a ban or dit.

NAT ¤

NAT = Log(PROBABILITY_RATIO, base=_E).alias('nat')

Natural level of information (base e).

INFORMATION_CONTENT ¤

INFORMATION_CONTENT = QtyKind(
    SHANNON, ("information_content",)
)

Logarithmic quantity derived from the probability of a particular event.

Wikidata: Q735075
Symbol: $I(x)$
$$I(x) = \log_b \frac{1}{p(x)}$$
$ I(x) $
=
Information content (dimensionless)
$ b $
=
Base of logarithm (2 for shannon, 10 for hartley, e for nat)
$ p(x) $
=
Probability of event x

MAXIMUM_ENTROPY ¤

MAXIMUM_ENTROPY = ENTROPY['maximum']
Wikidata: Q106416338
Symbol: $H_0$

RELATIVE_ENTROPY ¤

RELATIVE_ENTROPY = Dimensionless('relative_entropy')
Wikidata: Q106432207
Symbol: $H_r$
$$H_r = H / H_0$$
$ H_r $
=
Relative entropy (dimensionless)
$ H $
=
Entropy (joule · kelvin⁻¹)
$ H_0 $
=

REDUNDANCY ¤

REDUNDANCY = QtyKind(SHANNON, ('redundancy',))

In information theory, extra bits transmitted without adding information.

Wikidata: Q122192
Symbol: $R$
$$R = H_0 - H$$
$ R $
=
Redundancy (dimensionless)
$ H_0 $
=
$ H $
=
Entropy (joule · kelvin⁻¹)

RELATIVE_REDUNDANCY ¤

RELATIVE_REDUNDANCY = Dimensionless('relative_redundancy')
Wikidata: Q106432457
Symbol: $r$
$$r = R / H_0$$
$ r $
=
Relative redundancy (dimensionless)
$ R $
=
Redundancy (dimensionless)
$ H_0 $
=

JOINT_INFORMATION_CONTENT ¤

JOINT_INFORMATION_CONTENT = INFORMATION_CONTENT['joint']
Wikidata: Q106448630
Symbol: $I(x,y)$

CONDITIONAL_INFORMATION_CONTENT ¤

CONDITIONAL_INFORMATION_CONTENT = INFORMATION_CONTENT[
    "conditional"
]
Wikidata: Q106449009
Symbol: $I(x|y)$
$$I(x|y) = I(x,y) - I(y)$$
$ I(x|y) $
=
$ I(x,y) $
=
Joint information content (dimensionless)
$ I(y) $
=
Information content (dimensionless)

CONDITIONAL_ENTROPY ¤

CONDITIONAL_ENTROPY = ENTROPY['conditional']

Measure of relative information in probability theory and information theory.

Wikidata: Q813908
Symbol: $H(X|Y)$
$$H(X|Y) = \sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j) I(x_i|y_j)$$
$ H(X|Y) $
=
$ p(x_i, y_j) $
=
Joint probability
$ I(x_i|y_j) $
=

EQUIVOCATION ¤

EQUIVOCATION = CONDITIONAL_ENTROPY['equivocation']

Concept in information theory: the information that is lost during transmission over a channel between an information source (sender) and an information sink (receiver).

Wikidata: Q256358
Symbol: $H_\Delta(X|Y)$

IRRELEVANCE ¤

IRRELEVANCE = CONDITIONAL_ENTROPY['irrelevance']
Wikidata: Q106453686
Symbol: $H_\nabla(Y|X)$

TRANSINFORMATION_CONTENT ¤

TRANSINFORMATION_CONTENT = INFORMATION_CONTENT[
    "transinformation"
]

Measure of dependence between two variables.

Wikidata: Q252973
Symbol: $T(x,y)$
$$T(x,y) = I(x) + I(y) - I(x,y)$$
$ T(x,y) $
=
Transinformation content (dimensionless)
$ I(x) $
=
Information content (dimensionless)
$ I(y) $
=
Information content (dimensionless)
$ I(x,y) $
=
Joint information content (dimensionless)

MEAN_TRANSINFORMATION_CONTENT ¤

MEAN_TRANSINFORMATION_CONTENT = QtyKind(
    SHANNON, ("mean_transinformation_content",)
)
Wikidata: Q106460818
Symbol: $T$

CHARACTER_MEAN_ENTROPY ¤

CHARACTER_MEAN_ENTROPY = QtyKind(
    SHANNON, ("character_mean_entropy",)
)
Wikidata: Q106460846
Symbol: $H'$

AVERAGE_INFORMATION_RATE ¤

AVERAGE_INFORMATION_RATE = QtyKind(
    SHANNON * S**-1, ("average_information_rate",)
)
Wikidata: Q106466934
Symbol: $H^*$
$$H^* = H' / \bar{t}(X)$$
$ H' $
=
Character mean entropy (dimensionless)
$ \bar{t}(X) $
=
Mean value of the duration of a character in the set X (second)

CHARACTER_MEAN_TRANSINFORMATION_CONTENT ¤

CHARACTER_MEAN_TRANSINFORMATION_CONTENT = QtyKind(
    SHANNON, ("character_mean_transinformation_content",)
)
Wikidata: Q106483683
Symbol: $T'$

AVERAGE_TRANSINFORMATION_RATE ¤

AVERAGE_TRANSINFORMATION_RATE = QtyKind(
    SHANNON * S**-1, ("average_transinformation_rate",)
)
Wikidata: Q106492181
Symbol: $T^*$

CHANNEL_CAPACITY_PER_CHARACTER ¤

CHANNEL_CAPACITY_PER_CHARACTER = QtyKind(
    SHANNON, ("channel_capacity_per_character",)
)
Wikidata: Q106505959
Symbol: $C'$
$$C' = \max T'$$
$ C' $
=
$ T' $
=

CHANNEL_TIME_CAPACITY ¤

CHANNEL_TIME_CAPACITY = QtyKind(
    SHANNON * S**-1, ("channel_time_capacity",)
)

Tight upper bound on the rate at which information can be reliably transmitted over a communications channel.

Wikidata: Q870845
Symbol: $C^*$
$$C^* = \max T^*$$

KIBI ¤

KIBI = Prefix(1024 ** 1, 'kibi')

MEBI ¤

MEBI = Prefix(1024 ** 2, 'mebi')

GIBI ¤

GIBI = Prefix(1024 ** 3, 'gibi')

TEBI ¤

TEBI = Prefix(1024 ** 4, 'tebi')

PEBI ¤

PEBI = Prefix(1024 ** 5, 'pebi')

EXBI ¤

EXBI = Prefix(1024 ** 6, 'exbi')

ZEBI ¤

ZEBI = Prefix(1024 ** 7, 'zebi')

YOBI ¤

YOBI = Prefix(1024 ** 8, 'yobi')